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Let me start by dedicating this lecture to the memory of Professor John Clark Slater,
who has meant so much for the development of atomic, molecular, and solid-state
theory not only in the United States but all over the world. He was a gredt physicist and
an outstanding human being, and—for more than 15 years—he played an integral part
in the Sanibel Symposia.

Some Historical Remarks

Let me next try to answer the question why it all started on Sanibel Island 25 years
ago, in January 1961, and I apologize if I must give the story a rather personal touch. In
1948, T had been appointed Docent (Assistant or Associate Professor) in Theoretical
Physics at Uppsala University, Uppsala, Sweden; such a position had a duration of six
to seven years and could, in principle, not be renewed. Since 1950, I was spending
about half of my time each year at various American institutions and, in the Spring of
1955, I tentatively accepted a professorship in the United States, since my appointment
in Uppsala was going to be terminated. At this time, I learned that the King of
Sweden—H.M.K. Gustaf VI Adolf—offered me the leadership of a new, small
research group in the quantum theory of matter at Uppsala University, so—from July
1, 1955—1I became the Director of the Uppsala Quantum Chemistry Group with a
position at the Swedish Natural Science Research Council. Fortunately, my contact
with the United States continued, and I got several Americans as Visiting Professors in
Uppsala.
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Together with Professor Harrison Shull—now Chancellor of the University of
Colorado in Boulder, Colorado—1I discovered that many of the fundamental results in
guantum theory from the golden years, 1925-1930, were being forgotten, and that
something drastic had to be done to prevent the field from deteriorating. For this
purpose, an International Summer Institute in Quantum Chemistry was arranged in
Valadalen in the Swedish mountains for four weeks in 1958—with 30 students and 13
lecturers—followed by a one-week international symposium with Professors Robert S.
Mulliken and Linus Pauling as main combatants. I will make some comments about
this symposium later. The symposium proceedings were published as “Acta Viladalen-
sia No. 3”—since the Acta Viladalensia Nos. | and 2 were jocular issues intended to
keep up the spirits of the participants in the isolation of the Swedish mountains, no
library has ever been able to collect the complete series, in spite of considerable efforts.

The 1958 Summer Institute was so successful that it was decided to try to arrange a
considerably larger institute in 1959 at Skogshem, Lidingd, outside Stockholm. The
1959 Institute was a four-week affair with two sessions in parallel—a more elementary
part and an advanced part—and it gathered more than 120 participants from more than
20 nations. It was supported by Uppsala University, by the Swedish Natural Science
Research Council, and by the US National Science Foundation.

On the suggestion of NSE, I had, in 1958-1959, started considering the possibility of
whether the Uppsala group could start a daughter-project somewhere in the United
States devoted to the research in the quantum theory of matter and to teaching on
research level, and, during my lecture tours, I had the opportunity to look at many
different places. It was finally decided the new project should be started at the
University of Florida—partly because Gainesville, Florida, was a beautiful, small,
garden city, where one could get to work in almost no time, but mainly because the
university had a very vigorous administration with President J. Wayne Reitz, Dean of
Academic Affairs Robert B. Mautz, Dean of the Graduate School Linton E. Grinter,
Chairman of the Chemistry Department Harry H. Sisler, and Chairman of the Physics
Department Stanley S. Ballard in charge. You will meet them all at the 25th
Anniversary Banquet.

The Florida Quantum Theory Project was formally started on January 1, 1960, and,
in addition to me and my family, there arrived several young scientists from Uppsala
for their first international assignment: Jan Linderberg with wife, Jean-Louis Calais,
and Klaus Appel with wife—the two former pioneers are here today. The second bunch
of Uppsala representatives included Yngve Ohrn and Jan Nordling—both with
families—and they are represented here today. Since one of the ideas behind the
Florida projects was to arrange a four to five week Winter Institute in Quantum
Chemistry to be supported by NSF, my wife Karin and [ toured the Florida coastline in
the spring break of 1960 looking for some beautiful and isolated places, and we looked
particularly at Key Biscayne, Flamingo, and Sanibel Island. In these days, Sanibel
Island could only be reached by ferry or by small airplanes, so it seemed ideal for our
purpose. We hence started negotiations with Mr. Howard Dayton, owner of Casa Ybel
Hotel—not knowing that many features of the island would be changed by Hurricane
Donna, which occurred in the beginning of the Fall 1960.

The first Winter Institute in Quantum Chemistry and Solid-State Physics at the
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University of Florida started December 6, 1960 with three weeks in Gainesville, two
weeks on Sanibel Island, followed by a one-week international symposium on the
island in January 1961. The number of participants was fairly limited (60-80), whereas
the average academic level was comparatively high—around the associate-professor-
level. The institutes were supported by the National Science Foundation for many years
to come (until this type of grant was legally terminated by the Congress), and I
remember particularly that the NSF per diem was $12 per day and participant, which
corresponds rather well to the $50 Florida per diem of today. The Sanibel Symposia
were, for many years, financially supported by the USAF Office of Scientific
Research, which had some form of “monopoly” on this sponsorship. Later, IBM
started supporting the part devoted to the Computational Quantum Sciences. There are
qQuite a few of the pioneers from 1961 here today, and I greet them particularly
welcome.

One of the ideas behind establishing the new project in Florida was that we should
try to establish contact with the major universities in Latin America: Mexico, Brazil,
Argentina, Chile, etc., and we were happy to see that these efforts were successful and
of essential importance for the development of quantum sciences on this continent.

The Florida Winter Institutes ended in 1972 due to lack of support, whereas the
Uppsala Summer Institutes were stil] being arranged in a new form in 1984.

The Sanibel Symposia are still going strong, and by now it is clear that more than
5000 scientists representing more than 40 nations have attended these Symposia.
Professor John C. Slater never came to the 1961 Sanibel Symposium. In a letter to me
he wrote, “I will be happy to participate in these symposia, whenever you arrange them
in a place which I can easily reach by air from Boston. Sanibel Island seems to be
situated out of this world.” A couple of years later, Dr. Slater made a special effort and
came to a Sanibel Symposium. He and his wife, Rose, fell in love with the primitive
beauty of the island, and a few years later, they built their own house not too far from
the lighthouse. They became an integral part of the Sanibel Symposia. Dr. Slater
finally died on the island (July 25, 1976).

One of the great pioneers in quantum theory and its applications from the golden
years, 1925-1930, was Professor Egil Hylleraas, Oslo University, Oslo, Norway, and
Harrison Shull and I had convinced him that he should reprint his collected papers, so
that they would be easily available to the new generation of quantum scientists. In
1963, we arranged a special Sanibel Symposium in his honor and it turned out to be a
fine international gathering with the proceedings published in Reviews of Modern
Physics. The 1965 Symposium was honoring Professor Robert S. Mulliken of the
University of Chicago, with the proceeding published as a separate issue of the Journal
of Chemical Physics. By now, the American Institute of Physics seemed worried that
We were trying to take over part of their publication activities, so we finally decided
that we would publish the Sanibel Proceedings in our own Jjournal—the International
Journal of Quantum Chemistry, to be published by the Interscience Division of John
Wiley and Sons, New York—with the first issue appearing January 1, 1967, and
editorial offices in the Uppsala group and in the Florida project.

The odd-year honorary symposia continued, and the series contains the names of
many of the famous pioneers in the quantum sciences:
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1963: E. Hylleraas 1977: L. Pauling

1965: R.S. Mulliken 1979: A. Einstein 100th Anniversary
1967: 1.C. Slater 1980: E. Bright Wilson

1969: H. Eyring 1982: J.E. Mayer

1971: I.H. Van Vleck 1983: Sir David Bates

1973: E.U. Condon 1984: M. Kotani

1975: L.H. Thomas

From the very beginning, one day of the Sanibel Symposia had always been devoted to
Quantum Biology, and Professors Alberte and Bernard Pullman, Paris, have been the
leaders of these activities over all the 25 years. In 1974, it was finally decided that
Quantum Biology should have its own three-day symposium, and this is still the
arrangement. Even in this series, there have been special honorary symposia:

1976: A. Szent-Gyorgyi
1979: A. and B. Pullman

devoted to the pioneers in this field.

It was realized that the building of the causeway to Sanibel Island in the late 1960s
would successively change its structure, and that the island would gradually lose much
of its primitive charm. The scientists joined the islanders in their efforts to try to
prevent the building of high-rise condominia, and, even if the builders were finally
winning the battle, it should probably be admitted that most of the condominia along
the Sanibel shoreline are built in very good taste.” However, with this enormous
development in real estate, the number of cars on the island increased to such an extent
that the traffic was almost always jammed, and it became difficult to get to and from
the airport. In 1976, the bulldozers started to take away the old buildings at Casa Ybel,
and, even if the condominia still offered an alternative, it was finally decided to leave
the island.

In 1977, the Sanibel Symposia were for the first time arranged on Florida’s east
coast—at the Sheraton Palm Coast Resort Inn about 30 miles south of St. Augustine.
For eight years, the Sheraton provided a new ideal environment for the Sanibel
Symposia. In 1985, the organizers had the intention of returning to Sanibel Island for
the 25th anniversary of the symposia, but this proved not to be possible. Since further
the Sheraton had sold out our original dates, we decided that we had to look for a
completely new place. As a result, we are celebrating the 25th Anniversary of the
Sanibel Symposia at the Whitney Marine Biological Laboratory of the University of
Florida at Marineland, with the participants accommodated at the Marineland Quality
Inn, and I am convinced that you will all find that this was a most satisfactory solution.

Before going into the discussion of the various scientific topics treated at the Sanibel
Symposia, I would like to say a few words about the general philosophy of these
meetings. For this purpose, I would like to go back to a little diagram I first showed at
the Vilddalen Symposium in the Swedish mountains in 1958. On the horizontal axis is
indicated the refinement of the theory, and on the vertical axis the agreement between
theory and experiment. As the theory is developed in terms of simple concepts, the
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curve approaches a point where there is almost complete agreement between theory
and experiment, and—with the kind consent of Professor Linus Pauling—this point
was called the “Pauling point.” However, one can always improve the theory—and
suddenly the good agreement is gone, and one is approaching a minimum, which could
perhaps be called the “Ph.D. point.” From then on, the curve starts rising again—
hopefully in the asymptotic limit approaching the line of perfect agreement between
theory and experiment.

Agreement
between Theory 100
and Experiment

Pauling Ph.D. Refinement of
Point Point the Theory

There are many examples of this phenomenon, particularly from the early 1930s. In
the theory of the chemical bonding of conjugated systems, or in solid-state theory,
one could often get excellent results if one neglected the overlap between the atomic
orbitals involved. The results would be changed, however, if one included the so-
called overlap integrals, and, in solid-state theory, one would have a real ‘‘nonortho-
gonality catastrophe.’’

In inorganic chemistry, the crystal field theory was finally a great success until one
tried to improve it by including the details of the ligands and to formulate it as a
“ligand field theory.”

Thanks to the developments of the electronic computers, most applications of the
theory to small systems have today successfully passed the first maxima and minima on
the agreement-curve. However, when it comes to more complicated systems, it is still
interesting to find out where the results belong on the agreement curve.

Most modern graduate students have probably learned that there is no reason for
their thesis results to stop at the “Ph.D. point,” since there is often a senior faculty
member around who is willing to give the lecture, “How to Get Good Results without
Actually Cheating.” Mathematics is apparently flexible enough to permit us to explain
known experimental results—the essential problem of the theory is then to predict
experimental results which are still unknown.

The main point of this discussion is that good agreement between theory and
experiment is a necessary—but by no means sufficient criterion for the goodness of a
theory. The main aim of the Sanibel Symposia has always been to go beyond the
“Pauling point” and to really test the final outcome of the theory. There is no question
that this is also the main goal today.
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Some Scientific Aspects

In looking back over 25 years of Sanibel Symposia, it becomes evident that the
scientific emphasis of the symposia has shifted a great deal over the years. This has
partly been due to planning from the side of the organizers and partly dependent on the
fact that some of the plenary lecturers have delivered some real surprises.

The 1961 Symposium was devoted to a general survey of atomic, molecular, and
solid-state physics with a great deal of emphasis on the Hartree—Fock scheme and to its
extension by the CI-method. The 1963 Hylleraas symposium was considerably more
advanced with emphasis on the correlation problem associated with the Coulomb
repulsion— e?/r;, —on the representability problem for the reduced density matrices,
and on the symmetry dilemma in the restricted variational methods (like Hartree—
Fock).

Let us start by reviewing some results related to reduced density matrices. In general
quantum statistics, a system of N electrons is described by a system operator I' having
the properties

Fr=0, =T, T=1i, (1

whereas all the system operators {I'} form a convex set. If X ={x;,xz,...xn} is the
composite coordinate, the system operator I" has a kernel:

F(XIX') = F(xl,xz,. . -INIIfaxé,- . XN) (2)

usually referred to as a density matrix. For an electronic system, the kernel is
antisymmetric in each set of the coordinates. The convex set {I'} is determined by its
limit points, satisfying the additional relation I'*=T', in which case the projector I" has
a range {Wa} which uniquely defines a normalized “wave function” W, so that
['=|¥)(¥|. In such a case, one has a pure state in quantum mechanics, and the
density matrices by successive trace formation; for instance:

Tlei 205 -INIII,IQ:- cxy) = Wlxxg, . xw) UF L, LX) (3)

Starting from the Nth order density matrix, one can now define a series of reduced
density matrices by successive formation; for instance:

Fias o X | 2105 + < 95)
M Xoo, | 1,3 ! dx, dxy, (4
P 19%25 - - - XpsXp1. . o AN xl3x29"-xp!xp+1,“'xN) p+1-- -GAN, ( )

r(xl X2 |xi sxé)

N o

= (2) fr(xl!'rZ:XSQ .. '):N|x11x27'x3: .. 'xN) dx3' . 'des (5)
Ty [x1)

= Nfr(xl,xz,...xN[x{,xz. i .XN) dx-z...dIN. (6)
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By considering the spectral resolution of the first-order density matrix:
TGelxi) = 3 m Xelx) Xi(x), (7

one gets the natural spin-orbitals X,(x,), and by studying the spectral resolution of the
second-order density matrix

[y, |x) %) = 2 my Xioer ) X (xfx3), (8

one obtains the natural geminals X(x,,x,). _

Using the reduced density matrices, we will now discuss the correlation problem
connected with the Coulomb repulsion e?/r,,. For the total electronic Coulomb energy,
one has the expression:

c=e2jjri‘ii~ix‘—mdxldx2. o

Since the reduced second-order density matrix I’ (xllex{xé) is antisymmetric in each
set of its indices, so that

F('stlex;"xz’) = —r(x1312lx;9x'£) = F(X[,XZIIZ’,ID (10)
one has
F(xl:xz[x;sle) = Oa (11)

for xy=x, and x{=2x}, or r;,=0 and {1 =15, which is the famous “Fermi hole” for
parallel spins. The correlation problem is connected with the fact that, for antiparallel
spins {; # {5, one needs a “Coulomb hole” of the form

T(xy,x|x),x5) = 0, (12)

whenever ry=r,, i.e., rjp=0. A great deal of time at the 1963 conference was devoted
to discussions of the shape of the Coulomb hole, and to the proper treatment of the
correlation problem—particularly since this was one of Professor Hylleraas’ spe-
cialities.

Let us next turn to the representability problem for the reduced density matrices. In
non-relativistic atomic, molecular, or solid-state theory with fixed nuclei, the
Hamiltonian takes the form:

H = Ho+3H;+32 Hy, - (13)
] i<y

where H g, is the nuclear Coulomb repulsion energy, H, is the sum of the kinetic energy
of electron i and its Coulomb attraction energy in the field of the nuclei, and H is the
interelectronic Coulomb repulsion energy ezfr,-j. For the expectation value: of the
Hamiltonian, one obtains

(H> = TrHT = H(0)+IH]F(I1 IID dXI +J‘H12F(xinx2‘xi’x2’) dxl de: (14)
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where the operators H; and Hj, in the integrands work only on the unprimed
coordinates, and one puts x{ = x, and x» = x, before the integrations are carried out.
Using the connections between the density matrices, one may write

H) = lezr(xi,Iz|xf,xﬁ) dx, dx; (15)
where

K12 N(N 1) + 1 {H +H2}+H12: (16)
is the reduced two-particle Hamiltonian studied, e.g., by A.J. Coleman. It is easily
shown that, if the N-electron system has a ground state with the energy Ep, and the Nth
order density matrix satisfies the relations (1), then one has the inequality

(H) = Eq, (17)

which may form the basis for a variational principle. The expressions (14) and (15)
depend only on the second-order density matrix ['(x;,x3|x{,x3), and such a density
matrix is said to be ensemble-representable if it may be derived from a Nth order
density matrix satisfying the relations (1) by means of the formula (5). Such a density
matrix is said to be wave-function representable, if the Nth order density matrix may be
written in the special form (3). There have been numerous necessary conditions given
for the representability of a second-order density matrix, whereas it has been very
difficult to give some sufficient conditions—short of solving the Schrédinger equation
itself. At the 1963 conference a great deal of time and effort were devoted to the
representability problem.

In this connection, Coleman also studied antisymmetric wavefunctions, which were
built up by antisymmetrized geminal powers (AGP):

W(x), X2, %3, . . . Xz0) = (N1)7! EP: (=17 Pg(x1,x2) . . . 8(X2n—1,%X20)
= Oas I1 80— 1,%20), (18)

and proved not only that they contain the Hartree—Fock approximation as a special
case, but also that they go far beyond this approximation in treating the correlation
problem.

At the 1963 symposium, one also discussed the symmetry dilemma in the Hartree—
Fock method and similar restricted variational treatments. Let us assume that the
Hamiltonian H has a constant of motion Q, which is also a self-adjoint projector, so
that

Hg =p0H, *=0. 0" =0. (19)

In such a case, it is easily shown that, if ¥ is an exact eigenfunction to A, so that
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HY = EV, (20)

then one has
ov = v, 2D

either by necessity in the nondegenerate case or by choice in the degenerate case. This
theorem implies that, if the Hamiltonian A has a specific symmetry property, then the
exact eigenfunctions will be automatically symmetry-adapted or may be arranged in
that way. :

In the Hartree—Fock method, the total wavefunction ¥ is approximated by a single
Slater determinant D, so that W=D, Starting from the expectation value

(D|H|D)
(D|D)

one determines the best determinant D by means of the variation principle 8(H) =0,
which leads to the famous Hartree—Fock equations. The symmetry dilemma arises from
the fact that one has overlooked that the approximate wavefunction D does not
automatically satisfy relation (21) or:

(H) = ’ (22)

QoD = D. (23)

In fact, the relation represents a variational constant which will raise the energy. It is
interesting to observe that, if one introduces the condition (23) in the beginning of a
self-consistent-field cycle, it remains self-consistent and leads to a symmetry-adapted
Slater determinant D corresponding to a local minimum. On the other hand, if one
gives up the constraint (23), the solution of the Hartree—Fock equations may lead to an
absolute minimum for the expectation value (H), which is usually no longer symmetry-
adapted, i.e., QD #D.

If the constraint QD =D is imposed, one speaks of the Restricted Hartree—Fock
(RHF) method, otherwise of the Unrestricted Hartree-Fock (UHF) method. The
discovery of the symmetry dilemma led immediately to a deeper insight into the
connection between the various Hartree—Fock schemes, and to a new understanding of
the phenomena of spin-polarization and correlation splitting of orbitals. At the
following Sanibel Symposia, a large number of examples of not symmetry-adapted
absolute minima were demonstrated.

Today we would perhaps say that the absolute minimum of (H) would correspond to
the General Hartree—Fock (GHF) method, and note that the mathematical existence of
the corresponding solutions has been proven by B. Simon and E. Lieb, even if-—so
far—no one has evaluated them in practice. It is interesting to observe that the
mathematical existence of the solutions to the RHF scheme has not yet been
established, whereas these solutions have been evaluated in practice in many different
cases. This provides an excellent example of the mathematical dilemma in many areas
of modern theoretical physics and chemistry.

At the 1965 Mulliken Symposium, it is clear that a great deal of attention was
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devoted to the molecular-orbital (MO) methods in general, and to the ASP-MO-
LCAO-SCF methods in particular. The developments in these areas—for which Robert
S. Mulliken was awarded the 1966 Nobel Prize in Chemistry—are well-known and do
not need an explicit presentation here.

Instead we will briefly comment on the calculation of lower bounds to energy
eigenvalues by means of a truncated basis—a fact which turned out to be a great
surprise to most of the participants. If A is a positive definite self-adjoint operator with
the inverse A !, and A ={h,ha, . . .hy} is a linearly independent set of order p, and
A=(h|A~"|h) is a quadratic matrix of order p X p with the inverse matrix d=A"!,
then it is easily shown that the operator

A" = [RYRIAT R ] = S |k duhl @4

k=1

is a lower bound to the operator A and approaches it from below when p— o, and the
set h becomes complete. The operator A’ is often referred to as an inner projection of
the operator A, and it should be observed that the lower-bound property may be
extended also to operators which are not positive definite, as long as the negative part
is finite. If H=H,+V is a perturbed Hamiltonian, where V is a positive definite
perturbation, then H' = Hy+ V' is a lower bound to . For the associated eigenvalues,
one has

E,<E, (25)

in order from below, which leads to a simple method for calculating lower bounds to
eigenvalues with whatever accuracy is desired. A series of papers on lower bounds was
presented at this meeting by the various members of the Florida Quantum Theory
Project covering such applications as the He-like ions, the rigid rotator, the anharmonic
oscillator, the double-well potentials, and the low-lying excited states of He and H .
At the 1967 Slater Symposium, a great deal of attention was devoted to the

exchange-correlation effects, the Xo-method, and the applications to solid-state
physics. In the Hartree—Fock scheme, the so-called effective Hamiltonian takes the

form:
2
= P15 E& 2 p(x2=x2)—p(xl,x2) P
Heer (1) om € Eﬁg + e [dx, T2 2 (26)
and of particular importance is the “exchange term”:
Vo) = = [dr, 20122 Pra @

where Py, is the permutation operator defined through the relation Pia flx;,x0) =
f(x2,x,). The exchange term is a rather complicated, nonlocal potential, and we note
that already in the 1930s in the Thomas—Fermi—Dirac theory, the following approxima-
tion had been suggested:

Vxa(l) = —60 (3p/87)"53, (28)

This approximate form was taken up again in 1951 by Slater who suggested the value
a=1. It was shown by Gaspar that « =24 would lead to a better approximation, and
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this value was also used by Kohn and Sham in 1965.

The formula (28) forms the basis for Slater’s X -alpha method, which combined
with the augmented plane wave (APW) method, turned out to be an excellent tool for
studies in applied solid-state theory. Slater could now study many complicated crystals
under normal conditions or under very high pressure, and he could investigate their
ferromagnetic or anti-ferromagnetic properties. A long-time dream as to applications
started to become a reality.

In the APW method, it became customary to use the muffin-tin approximation and to
introduce the proper non-muffin-tin corrections—a problem which has got its proper
solution only during the last few years. The entire approach was enormously successful
as carried out by J. Connolly, K. Johnson, D. Ellis, A. Freeman, and other Slater
associates. The X ,-method and its applications to solids was going to be a standard
part of the Sanibel Symposia for almost a decade to come, and Professor John C. Slater
loved to gather his students, postdoctoral fellows, associates, and professors for a
special meeting outside the lecture hall in one of the afternoons to listen to the recent
progress reports from other institutions.

At the 1967 symposium, the very last lecture was given for the first time by
Professor Berndt Matthias from the University of California in La Jolla and Bell
Telephone Laboratories, who spoke about the superconducting properties of new alloys
and predicted what elements would be found to be superconducting in the year to
come. This started a long tradition at the Sanibel Symposia, which was only broken
when Berndt passed away in 1980. In his lecture, Berndt often made fun of the
theoreticians in connection with their complicated attempts to explain superconductivi-
ty, but he sometimes needled also the experimentalists and the various claims as to the
discovery of high-temperature superconductors. In his predictions, he was always
correct—probably because he had already gathered enough unpublished experimental
results himself. His presence added a great deal of “intellectual spice” to a long series
of Sanibel Symposia.

Personally, I felt that even with Professor Slater’s enormous success in the solid-state
applications, there were new elements in solid-state physics which should not be
neglected at the Sanibel Symposia, e.g., the new developments in spin-wave and
charge-wave theory. Professor Slater responded to these ideas by finishing his own
lecture with an anecdote about an old Quaker couple sitting meditating together. “The
old man said, ‘I thought we had agreed that the whole world is crazy, except for thee
and me—and now I start wondering about thee,’ ™ said Professor Slater and looked at
me. But Professor Slater had a generous nature, and Professor Al Overhauser was
invited to speak about the new developments at a following Sanibel Symposium.

The X ,-method is a simple example of a “density functional method,” in which a
complicated nonlocal potential is approximated by a potential, which depends on the
electron density p only. According to the Hohenberg—Kohn theorem from the 1960s,
the ground state energy of any atomic, molecular, or solid-state system with fixed
nuclei is a unique functional of the electron density p:

E = E(p). (29)

If we go back and remember the problem one has to show whether a second-order
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reduced density matrix I'=T'(x,x,|x{x) is representable or not, we realize how
difficult it must be to describe a system using only the electron density:

plr) = Tluilm) = o STl do. (30)
However, Professor E. Bright Wilson has given the following interpretation of this
rather difficult situation: if one knows p, one knows also the total number of electrons,
since Trp =N; the cusps of p will further indicate the locations of the nuclei, and the
shape of the cusps will give the atomic numbers of the nuclei involved. Hence, one can
construct the N-electron Schridinger equation for fixed nuclei, and the solution
determines all the electronic properties including the ground-state energy. This gives
undoubtedly an explicit recipe for the Hohenberg—Kohn functional, and we note that it
gives also a solution to the problem of whether a given second-order density matrix
['(x,x;|x{x}) is wave-function representable or not. For some reason, the Bright—
Wilson interpretation does not seem to be popular among the practitioners in these
areas. As we will see, the density-functional methods play a very important role also at
the current Sanibel Symposia.

In treating complicated systems, the semi-empirical methods have been of
fundamental importance in many of the Sanibel Symposia over the last 25 years. In
atomic theory, Slater’s theory of atomic spectra based on the F- and G-integrals had
been very successful; in molecular theory, the concept of chemical “resonance”
developed by Pauling and by Slater had turned out to be very forceful; and, in solid-
state theory, the semi-empirical theory of band structure constructed by Bloch,
Brillouin, Slater and others, and the crystal field theory developed by Van Vleck had
proven to be most useful. Many aspects of these approaches were reviewed at the early
Sanibel Symposia, but one usually had considerable difficulties in reaching any
improvements—these semi-empirical theories were apparently at their “Pauling
points.”

The treatment of conjugated systems is of particular importance in the study of large
biomolecules, and here the semi-empirical methods seemed to provide the only
possible approach—especially in the beginning. Everyone here realizes the importance
of the Hiickel method and the Extended Hiickel Theory (EHT) in this connection. In
1953, the Pariser—Parr—Pople (PPP) model represented a forceful attempt to take also
certain correlation effects into account, and it led to the concept of the “Neglect of
Differential Overlap” (NDO), which even today appears in such well-known symbols
as CNDO (introduced by John Pople at Sanibel in 1965), INDO, MINDO, NDDO, etc.
In the author’s opinion, part of the success of the PPP-model may be explained if one
replaces the original atomic orbitals (AO’s) ¢ by the orthonormalized atomic orbitals
(ONAO’s) ¢ obtained by the symmetric ortho-normalization:

¢ = d(d|d)~"% @31

these aspects have been further developed by Ohno and by Fischer—Hjalmars.

Even if the semi-empirical theories are highly useful, they are often characterized by
the dilemma that they are brought to a certain “Pauling point” beyond which they
cannot be improved. The theory itself may contain hundreds of parameters to be
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determined by a few experimental data, and, in this situation, one often assumes that
only a few theoretical parameters are of importance and that all others are negligible.
This leads often to the disappointing result that, once these parameters are calculated
on a pure theoretical basis, the values usually differ considerably from those obtained
from the experimental data. It is evident that the semi-empirical theories ought to be
improved, but we still don’t know how.

The ab-initio methods for treating atomic, molecular, and solid-state systems are
based on the idea that the systems are essentially described by the atomic numbers Z, of
the atomic nuclei involved, and that these nuclei in the Born—-Oppenheimer approxima-
tion may be considered as fixed. In such a case, one knows the nonrelativistic
Hamiltonian H, and the main problem is to solve the time-dependent Schrddinger
equation

h 8V _ ‘
e = HY, (32)
or the associated eigenvalue problem:
HY = EV, (33)

for the ground state and the low-lying excited states. It should be observed that, even if
one today has a great deal of experience in treating different symmetries and various
types of nuclear “conformations,” one has had considerable difficulties in going
beyond the Born—-Oppenheimer approximation, and that much work remains to be
done.

For small and moderate-size systems, the various Hartree—Fock methods (RHE,
UHEFE, PHF, etc.) have now become standard and the author is only disappointed that the
general Projected-Hartree—Fock (PHF) method has not been more frequently applied,;
in the treatment of conjugated systems and in the study of band theory, it is used
essentially in a special form called the alternant-molecular-orbital (AMO) method.
Even the MC-SCF methods have become standard, but the most essential develop-
ments have appeared in the method of superposition of configurations or configuration-
al interaction (CI) approach, to use an historical term.

Already in the 1930s, it was pointed out by P. Jordan that the structure of the
Cl-expansion may be understood and simplified by using the properties of the unitary
group. The irreducible representations of the unitary group were later classified by
Gelfand, and the so-called Gelfand symbols became an important tool in many parts of
theoretical physics. In the 1960s, several quantum chemists (Linderberg and Ohmn,
Matsen, Paldus, and Cizek, and others) discovered the usefulness of the Unitary Group
Approach (UGA), and by means of the Gelfand symbols, the theory was put in a
graphical form (Shavitt, Siegbahn, etc.) and simplified so that one could finally handle
wave functions containing more than one million configurations (Handy). The various
forms of UGA have played an essential role at the Sanibel Symposia, and many of the
pioneers in this field are here today.

The effectiveness of the Cl-expansions depends to a large extent on the choice of the
basis sets, and today the Gaussians still play a dominating role in the applications.
Unfortunately, the Gaussians can never express the correct asymptotic form of the
atomic and molecular wavefunctions, and this approach must then necessarily have a
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rather limited applicability. Authors interested in the correct asymptotic behavior have
often preferred to use Slater-type orbitals (STOs) and, during the last decade, there has

| been a renewed interest in the expansion of STOs on one atomic center around another
' center in terms of the so-called alpha-functions, which are useful in the evaluation of

two-, three-, and four-center integrals.

There is no question that the CI-methods are fairly primitive and that their success
depends on the existence of “number crunchers”: in fact, they have greatly benefitted
by the development of the electronic computers: from the scalar computers to vector
computers, to supercomputers. Today almost every quantum scientist wants a
supercomputer, and, in this connection, I would like to quote a saying by Peter Debye
at the 1955 Texas Conference<about computers in general: “If you have them—use
them; if you don’t have them—beat them!”

Let me confess that I think that the computers have added a great deal to the Sanibel
Symposia over the years, not only in the form of numbers—which are sometimes
difficult to understand—but particularly in the form of “computer graphics” which
have turned out to have a special appeal to the “chemists” in us, and which has
provided a new visual understanding of an otherwise very abstract field.

The big question is, of course, whether one can beat the CI-methods and the number
crunchers by a more conceptual approach to our field based more on ideas than on
“brute force.” The Sanibel Symposia have seen many developments of this type which
I will summarize under the name of wave operator methods. In this case, one starts
from a normalized reference function o, and one expresses the solution ¥ to the
eigenvalue problem (33) in the form

¥ = Wo, (34)

where W is the wave operator, which is by no means unique. One usually requires that
the eigenfunction W satisfies the intermediate normalization:

(o|¥) = (o|W|o) = 1, (35)

which has the advantage that it is applicable both to the discrete states and to the
continuum.

The wave operator approach has reflected the tremendous development in perturba-
tion theory over the last few decades, and a rather thorough survey was given at the
1978 Sanibel Workshop on “large-order perturbation theory.”

Another forceful approach has been provided by the resolvent methods, which are
sometimes referred to as propagator methods or Greens-function techniques. If z is a
complex variable, the resolvent R(z) to the Hamiltonian is defined through the relation

Rz) = (z-1 — H)~! (36)

which is well-defined forz # E. In mathematics, the spectrum {£} for the Hamiltonian
H is customarily defined as the complement to the set for which the resolvent is
regular. It should be observed that, even if the Hamiltonian is an unbounded operator,
the resolvent is usually bounded: if |z — E| = p, one has
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| R | sﬁ ||, (37)

for any wave function ®. We note that the Hamiltonian and the resolvent has the same
eigenfunctions WV:

HY = E¥, R(2)¥ = r(n)V, (38)
and that the eigenvalues are connected through the relations:
) =@—-EyLE=z—-7r"\ (39)

In mathematics, the resolvent was originally as a tool for solving the inhomogeneous
equation:
(H—z- 1)V, = ap, (40)

where the coefficient a may be determined so that the solution W, satisfies the
intermediate normalization (35). Using the resolvent, one gets directly:

= — = —_-—Ie—“_P_ 3
e RD® = GlR[e “h
where a= —(o|R|¢) ! and
W(z) = (@R(2)|¢), _ (42)

is the so-called Weinstein function, which is a typical example of a Green’s function.
We note that Eq. (40) goes over into the eigenvalue relation (33) for a=0, and it is
easily shown that the eigenvalues z = E associated with the boundary consition (35)
will now be represented by simple poles in the Weinstein function—even if the
eigenvalues themselves are highly degenerate. If one substitutes the expansion formula

R =z"'+ z7' HR(2), (43)

into the Weinstein function, one obtains so-called propagator formulas, which form the
basis for the propagator methods.

It should be observed that, even of the poles of the Weinstein function gives the
eigenvalues z = E, the expression (41) for the wave function takes the form oo/eo,
whenever z approaches an eigenvalue E. In order to carry out this limiting procedure,
one may proceed in'a slightly different way.

For this purpose, one introduces the projector O =|¢)(o| as well as the projector
P=1-0 for its complement. One gets directly

Op = ¢, ov. = o,
(44)
Pp = 0, PY. =W, — o
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Letting the operator P work on the imhomogeneous equation (40), one obtains

PH—-z-1D¥, =0, (45)
PH
and
PH\ !
v, = (1 - —) 0 @
zZ
which gives an explicit expression for the wave operator:
PH\ !
W= |(1-— . (48)
z
It is evident that, for all values of z including the eigenvalues z = E, one has the
simple indentity:
R(2)e ( PH) -1
V=t —=—= (] = — 3 49
(eRG)e) z) ¢ 5

which is highly useful in many connections. Formula (47) forms the basis for the so-
called partitioning technique, which the author has studied in a series of papers.
Multiplying the inhomogeneous equation (40) to the left by (¢|, one obtains:

a={(plH - z-1|¥,) = (gHW¥,) — z ‘
= (ole (1 - ?) o) — 2= f@2) — ¢, (50)

where f(z) is the so-called brecketing function. It is obvious that, instead of looking for
the poles of the Weinstein function, one may look for the zero-points of the function

a= f(z) — z. (51)

We note particularly that even multiple eigenvalues z = E correspond to single roots of
this equation.
If one expresses the wave operator W in exponential form

W = ¢, (52)

and looks for the explicit form of the operator T, one is led to the coupled-cluster
methods which have played a fundamental role during the last decade of the Sanibel
Symposia.

If one expresses the Hamiltonian in the form H=Hy+\V and substitutes this
expression into the wave operator (48), it may be expanded in a power-series in A
which leads to the corresponding perturbation expansion:

E = Eg+he;+ N+ Nes+ - - . (53)

= TS
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It has been realized that, even if this series is convergent, the summation of a few low-
order terms may not lead to any meaningful physical or chemical results, since the
series is too slowly convergent. The development of modern numerical analysis has
indicated that one should instead look for rational approximations of the form:

ag+Aa +Nax+ - +\"a,,

E = e Ao ATt E N,

(54)

A first attempt was made by constructing the Padé approximants to the power series
(53). One learned quickly, however, that one could construct the rational approxima-
tions directly from various forms of the wave operator (48) by using inner projections
(24), where the elements of the inverse matrix d=A "' may be expressed as quotients
between determinants. It was gratifying to learn that these rational approximations are
always convergent, even when the Padé approximants are not, and that they sometimes
provide upper and lower bounds for the quantities involved. It is undoubtedly true that
much work remains to be done in this particular field, and that the results obtained so
far seem greatly promising.

In conclusion, it should be emphasized that, whereas quantum mechanics deals with
the properties of pure states characterized by a wave function W, the true properties of
the electronic structure of matter are described by a system operator 1" having the
properties (1) and satisfying the time-dependent Liouville equation:

h ol
— = AL —TH. (33)
The kernel p of this operator is often referred to as a density matrix; see also relation
(2). One may write (55) in a form which is analogous to the Schrodinger equation (32),
by introducing a superoperator L called the Liouvillian defined through the relation

LT =HT-TH, (56)

where T is an arbitrary operator. This gives

h oll _ ~
= Far ar - L (57)

It may be shown that, if one introduces a proper binary product {4 |B} in the operator
space, one may solve the Liouville equation (57) by exactly the same Hilbert-space
methods as the Schridinger equation (32), and that this holds also for the associated
eigenvalue problems. The author prefers the classical Hilbert-Schmidt binary product:

{A|B} = TIA'B = 3 A% Bu, (58)
particularly since it makes the Liouvillian £ automatically self-adjoint:
{LA|B} = Tr (HA—AH)'B = Tr A" (HB—BH) = {A|LB}, (59)

but also many other binary products have been suggested in the literature. The
eigenvalue problem for the Liouvillian:
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C =vC, (60)
has directly the solution
C = |\I‘rf)(’qf,|, V= Ef—Er', (61)

i.e., the eigenvalues v are directly representing the spectral differences. In the
transition from the initial state ¢ to the final state £, one may keep the number N of the
electrons constant, or one may shift it to (N —1) or (N + 1) in order to obtain ionization
energies or electron affinities, respectively.

This Green’s function approach was first developed in quantum field theory, and—
via nuclear physics—it was introduced to quantum chemistry around 1965 by
Linderberg and Ohrn to become one of the more powerful methods for applications in
atomic, molecular, and solid-state theory to be dealt with at the Sanibel Symposia. It is
obvious from our discussion above that the superresolvent

A

Rz) = (-1 -D! (62)

should play a key role in this approach. If F is proper reference operator, which is
normalized so that {F|F}= 1, the eigenvalues Z=1v to the Liouvillian L. will now be
represented by the simple poles of the Weinstein function:

W(z) = {FIR@IF}, (63)
or the more general “Weinstein matrix.” If one introduces the expansion identity
Rpy=z"-1+z"LRG), (64)

one obtains the propagator formulas which form the basis of the propagator methods
proven so practically useful in studying the properties of materials.

Instead of solving the eigenvalue problem (62), one may now consider the
associated inhomogeneous equation:

(L —z-1)C, = aF, (65)
where the coefficient a is determined by the auxiliary condition:
{FIC}} = 1. (66)

This gives directly the solution:
RF
{FIR|F}

where a= —{F |R|F 1=1. It is evident that, even in this case, one has an identity of
the type (49), or: :

C. = —aR(2)F = (67)
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RF . PLNT
c=wm=(i-5) - 9
where P=1—|F}{F| is the projector for the complement to O = |F}HF|. From this
point, the theory for the Liouvillian £ may be developed in parallel with the theory for
the Hamiltonian H. ,

It is remarkable that the development of the propagator methods for the Liouvillian
has renewed the interest in the AGP-function of the type (18), and I am sure that we
will hear more about this approach this morning.

In conclusion, I would like to thank the University of Florida, Uppsala University,
the federal agencies, and particularly the staff of the Florida Quantum Theory
Project—gofers, secretaries, postdoctoral fellows, and professors, and also my wife,

Mrs. Karin Léwdin—for the combined efforts which have made 25 years of Sanibel
Symposia possible. We hope to continue these symposia also in the future.




