
Computational and Theoretical Chemistry 1006 (2013) 92–99
Contents lists available at SciVerse ScienceDirect

Computational and Theoretical Chemistry

journal homepage: www.elsevier .com/locate /comptc
Pauli potential and Pauli charge from experimental electron density

Vladimir G. Tsirelson a,⇑, Adam I. Stash a,b, Valentin V. Karasiev c, Shubin Liu d,⇑
a Quantum Chemistry Department, Mendeleev University of Chemical Technology, Moscow 125047, Russia
b Karpov Institute of Physical Chemistry, Moscow 105064, Russia
c Quantum Theory Project, Departments of Physics and of Chemistry, University of Florida, Gainesville, FL 32611, United States
d Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, United States
a r t i c l e i n f o

Article history:
Received 11 July 2012
Received in revised form 18 November 2012
Accepted 20 November 2012
Available online 29 November 2012

Keywords:
Chemical bond
Density functional theory
Electron density
2210-271X/$ - see front matter � 2012 Elsevier B.V.
http://dx.doi.org/10.1016/j.comptc.2012.11.015

⇑ Corresponding authors. Tel.: +7 499 978 958
(V. Tirelson), tel.: +1 919 962 4032; fax: +1 919 9

E-mail addresses: vtsirelson@yandex.ru (V.G. Tsire
(S. Liu).
a b s t r a c t

In this work, based on the experimental electron density, we present the approximate spatial distribu-
tions of the Pauli potential, one of the key quantities in the orbital-free density functional, for three crys-
talline systems: diamond, cubic boron nitride, and magnesium diboride. Our aim is to reveal a link
between the Pauli potential and the orbital-free picture of chemical bond. We also expand the theoretical
framework by developing the concept of the Pauli charge density. We find that both these quantities
reproduce the electronic shell structure in the atomic core regions, while in the bonding region they
reveal the different features for different bonding types, thereby distinguishing between ionic and cova-
lent bond and also identifying the distinction between polar and nonpolar covalent bonds. Therefore, the
Pauli potential and its associated charge density can be used as the orbital-free descriptors of chemical
bond in the crystalline systems.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Density functional theory (DFT) has become one of the most
powerful tools in computing the electronic structure of molecules
and solids [1,2]. It is both theoretically rigorous and computation-
ally efficient. From another side, recent progress in the X-ray dif-
fraction instrumentation [3,4] provides an opportunity for further
development of the experimental data treatment methods to be-
come a reliable tool in the detailed study of the physical and chem-
ical properties of solids, which are defined by the electron density.
Naturally, these methods are based on density functional theory
and usually include quantum-topological analysis of electron den-
sity from the bonding point of view [5,6]. However, the most pop-
ular implementation of DFT makes use of the Kohn–Sham scheme
[7], in which single-particle orbitals are introduced and the non-
interacting kinetic energy is treated exactly instead of using
approximate density functionals [8]. The computational complex-
ity of the Kohn–Sham scheme goes at least as N3 in a plane wave
basis set or N4 in a localized one, where N is the total number of
electrons or basis functions. This relatively high computational
cost restricts the extent to which the Kohn–Sham method can be
applied to the simulation of large systems of biological and mate-
rial science relevance. In the recent literature of DFT developments,
All rights reserved.
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we have witnessed a renewed surge of efforts to use the density
and its derivatives only in the simulation of electronic properties
of molecules and crystals. This latter approach is often called orbi-
tal-free DFT (OF-DFT), see [9–12] for reviews. The attractiveness of
the OF-DFT approach lies in the fact that regardless of the system
size, the problem size scales at worst with the volume. However,
the difficulty of developing physically valid approximations for
the non-interacting kinetic energy density functional has limited
the development of effective OF-DFT methods [13–24] severely.
The use of orbital-free methods is almost inescapable, however,
for the case in which only the electron density reconstructed from
X-ray diffraction data is used as the input for analysis of physical
and chemical properties. From the viewpoint of developing new
approximate orbital-free functionals, the data retrieved from
experiments may serve as a reference exactly in the same way as
data obtained from the high-level theory.

In the OF-DFT approach, instead of a self-consistent problem for
a set of KS orbitals, one obtains a single Euler equation by minimiz-
ing the total energy density functional E[q] subject to the con-
straint that the total electron density q(r) is normalized to the
total number of electrons. The Euler equation has the following
Schrödinger-like form [25–27],

f�1=2r2 þ vhðrÞ þ veff ðrÞgq1=2ðrÞ ¼ lq1=2ðrÞ; ð1Þ

where l is the chemical potential, vh(r) is the Pauli potential, and
veff(r) is the effective potential. The last quantity is in fact the stan-
dard Kohn–Sham potential. It can be decomposed further into the
following contributions,
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veff ðrÞ ¼ vesðrÞ þ vxcðrÞ: ð2Þ

The electrostatic potential, ves(r), is the sum of the external po-
tential, vext(r), and the classical inter-electron Columbic repulsion
potential, vJ(r),

vesðrÞ ¼ vextðrÞ þ v JðrÞ ¼ �
X

a

Za

jr� Raj
þ
Z

qðr0Þ
jr� r0j dr0: ð3Þ

The exchange–correlation potential, vxc(r), is defined as the
functional derivative of the exchange–correlation energy func-
tional Exc[q],

vxcðrÞ ¼
dExc½q�

dq
: ð4Þ

The term vh(r) in Eq. (1), the Pauli potential [27, 28], stems from
the effect of the many-electron wave function anti-symmetry
requirement in the kinetic energy [29–31].

Given a system and exchange–correlation functional approxi-
mation, the Pauli potential can be obtained readily via the
Kohn–Sham orbitals and eigenvalues {ui,ei} as [29]

vhðrÞ ¼
XN=2

i¼1

½rðuiq
�1=2Þ� � rðuiq

�1=2Þ þ ðeN=2 � eiÞ2u�i uiq
�1�; ð5Þ

for the case of N/2 doubly occupied orbitals. The non-negativity of
vh(r) is one of the exact properties of the Pauli potential which fol-
lows from Eq. (5). At the same time, to the best of our knowledge, no
numerical data has been available in the literature for the Pauli
potential obtained from the electron density without the use of
one-electron orbitals, except for a few atomic and molecular cases
[12,22,32]. In this work, we report the first examples of the Pauli
potential for a few crystalline systems, namely diamond, cubic bor-
on nitride, and magnesium diboride, approximately reconstructed
from experimental (X-ray and synchrotron) electron density mea-
sured by accurate diffraction methods. We are also interested in
exploring how the chemical bonding features derived from experi-
ment manifest themselves in the Pauli potential in the crystals with
different bonding types. Similar studies, for the case of theoretical
Kohn–Sham densities, have already been reported for the compo-
nents of the Kohn–Sham local potentials in atoms [33] and diatomic
molecules [34]. In addition, the corresponding charge densities de-
fined through the Poisson equation from the Pauli potential are also
presented in this work.

2. Theoretical framework

Conventionally, the total energy density functional E[q] can be
decomposed into the non-interacting kinetic energy Ts[q], the elec-
trostatic energy Ees[q], and the exchange–correlation energy Exc[q],

E½q� ¼ Ts½q� þ Ees½q� þ Exc½q� ð6Þ

where Ees[q] is the sum of the electron-nuclear attraction Een[q], nu-
clear–nuclear repulsion Enn, and the classical Columbic repulsion
J[q],

Ees½q� ¼ Een½q� þ Enn þ J½q�: ð7Þ

The exchange–correlation energy, Exc[q], includes the kinetic
counterpart of so-called the dynamic electron correlation
[35–37]. The foregoing energy decomposition can be re-arranged
to separate the Weizsäcker kinetic energy [38]

TW ½q� ¼
1
8

Z jrqðrÞj2

qðrÞ dr ¼ 1
2

Z
jr½q1=2ðrÞ�j2dr ð8Þ

giving

E½q� ¼ TW ½q� þ Th½q� þ Ees½q� þ Exc½q�; ð9Þ
with the Pauli energy Th[q], defined as

Th½q� B Ts½q� � TW ½q�; ð10Þ

where Ts[q] is the Kohn–Sham non-interacting kinetic energy
functional.

The Pauli potential is defined as the functional derivative of the
Pauli energy, Th[q], with respect to the electron density:

vhðrÞ ¼
dTh½q�

dq
¼ dTs½q�

dq
� dTW ½q�

dq
: ð11Þ

Here the term dTW ½q�
dq ¼ vW ðrÞ is the von Weizsäcker potential

(which was recently treated as the steric electronic potential [39]):

vW ðrÞ ¼
1
8
jrqðrÞj2

q2ðrÞ �
1
4
r2qðrÞ
qðrÞ : ð12Þ

Two approaches are available to express the Pauli potential, Eq.
(11), explicitly in terms of the electron density and its gradients.
One can use an approximate form of either the kinetic energy den-
sity functional or the exchange–correlation energy density func-
tional. To obtain the explicit expression for the functional
derivative of the non-interacting kinetic energy functional, dTs ½q�

dq ,
we can approximate the non-interacting kinetic energy density,
ts(r), in Ts[q] =

R
ts(r)dr, within the gradient expansion or conjoint

approximations [12]. For example, the Kirzhnits [40] second-order
gradient approximation yields

tsðrÞ ¼ cTFqðrÞ5=3 þ 1
72
jrðrÞj2
qðrÞ þ

1
6
r2qðrÞ; cTF ¼

3
10
ð3p2Þ2=3 ð13Þ

leading to

dTs½q�
dq

¼ 5
3

cTFqðrÞ2=3 þ 1
72

jrqðrÞj2

q2ðrÞ � 2
r2qðrÞ
qðrÞ

( )

¼ 5
3

cTFqðrÞ2=3 þ 1
9

vWðrÞ: ð14Þ

As a result, the approximate Pauli potential can be expressed in
the form

vhðrÞ ¼
5
3

cTFqðrÞ2=3 � 8
9

vWðrÞ: ð15Þ

Note that this approach is close to that already exploited by
King and Handy [41].

Another way to construct the Pauli potential is to use the Euler
Eq. (1) which can be presented in the standard form [42]

dTs½q�
dq

¼ l� veff ðrÞ ð16Þ

For a given system, l = const. The effective potential veff(r) is de-
fined up to an arbitrary constant, therefore it is convenient to set
l = 0 throughout this work [41]. It is assumed that for finite atomic
systems veff(r) ? 0 with r ?1 and vh(r) ? 0 with r ?1 [29]. Also
the Pauli potential will vanish in the special case of one electron or
two electron (singlet) systems.

Taking into account of Eq. (11), we arrive at the following
expression for the Pauli potential:

vhðrÞ ¼ �vesðrÞ � vxcðrÞ � vWðrÞ: ð17Þ

This way of computing the Pauli potential, in contrast to Eq. (15),
does not involve the use of an approximate kinetic energy func-
tional, but uses an approximate form for the exchange–correlation
term. Decomposing the exchange–correlation potential vxc(r) into
the exchange, vx(r), and correlation, vc(r), parts, vxc(r) = vx(r) + vc(r),
we can calculate it by the known approximate exchange and corre-
lation functional formulas. The simplest one is to use the local
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density approximation (LDA) to obtain vx(r) and vc(r) potentials. In
this work, we employed the von Barth–Hedin exchange and correla-
tion potentials [43].

Eq. (5) can also be used to evaluate the Pauli potential in case
that both the density and KS orbitals are given. In that case, if
the same approximation is used for the exchange–correlation term,
Eq. (5) will produce exactly the same result as Eq. (17) (see Ref.
[29] for details).

The Pauli charge density, qh(r), may be defined for potential vh

by means of the Poisson equation [44–46]

r2vhðrÞ ¼ �4pqhðrÞ: ð18Þ

In contrast to the potential vh, the associated Pauli charge den-
sity qh(r) can be both positive and negative. It also does not depend
on an arbitrary constant, such as the case for the constant l in Eq.
(16). It is worth noting that the function �qh(r) =r2vh(r) ‘‘works’’
in the same manner as Laplacian of the electron density. Therefore,
this function may be helpful in the topological analysis of the Pauli
potential from the bonding viewpoint.
3. Computational details

The Pauli potential in terms of electron density and its deriva-
tives was computed in two different ways: directly using the
approximate kinetic energy density within the gradient expansion
approximation via Eq. (15), and employing the Euler equation of
DFT and the approximate LDA exchange and correlation potentials
through Eq. (17). Because the two approximations are of different
character, these two approaches are expected to lead to different
results. To make a choice by identifying which approximation per-
forms better, we have computed the Pauli potential for the Ne, Ar
and Kr atoms, for which accurate numerical data of the Pauli po-
tential are available in the literature [32], using both Eqs. (15)
and (17).

The results are shown in Fig. 1. First, we notice that Eq. (15)
does not lead to proper behavior of the Pauli potential at small r.
The presence of the singular vW(r) term in Eq. (17) violates the con-
ditions of non-negativity of vh(r) valid for the exact Pauli potential
[29,26,47,48]. We found vh(r) 6 0 for r less than 0.033, 0.017 and
0.008 a.u. for Ne, Ar and Kr, respectively. It is certainly far beyond
the resolution achievable in present-day X-ray diffraction experi-
ments which are used to reconstruct the electron density in this
work. Secondly, the influence of the Laplacian term in vW(r) is more
apparent when the Pauli potential is computed using the gradient
Fig. 1. Pauli potentials computed for Ne, Ar and Kr atoms from relativistic orbitals [49].
(15), while vh,2 (blue solid curve) is computed through Eq. (17). (For interpretation of the
this article.)
expansion approximation of the kinetic energy density in Eq. (15).
In this case the values of vh are remarkably overestimated at
r < 0.1 a.u. Thus, the second-order Kirzhnits expansion [40] does
not describe properly the kinetic energy density of electrons close
to nucleus, where the electron density variations are not small.
Inclusion of the higher-order terms does not improve the situation.
Further, the Pauli potential, in contrast to the atomic electrostatic
potential, which decays monotonically from the nucleus, displays
the shell-like structure. The (n � 1) humps (potential barriers) in
vh denote the boundaries between n electronic shells. The outer-
most hump in vh for heavy atoms is almost lost in vh computed
using Eq. (15). This is one of the reasons why well-behaved approx-
imate forms of tS(r) are so difficult to find. In contrast, the atomic
electronic shell structure is clearly visible when Eq. (17) is used
to calculate the Pauli potential. These results convincingly demon-
strate that the derivation of the Pauli potential by means of Eq. (17)
is preferable in our case. It should also be indicated that our Pauli
potentials for the Ne, Ar and Kr atoms computed with (17) using
the local von Barth–Hedin exchange and correlation potentials
[43] successfully reproduce the peak values, numbers of atomic
shells, as well as long range behaviors of vh obtained by Nagy
[32] using accurate numerical data. Moreover, even quantitative
agreement of both sets of the Pauli potentials is observed for these
atoms. Therefore our present framework to compute the Pauli po-
tential using Eq. (17) seems to be reliable at least for this limited
set of tests. Thus, we follow this approach for the rest of the pres-
ent work.

The electron density and its derivatives needed for the crystal
potential reconstruction were derived from accurate experimental
(X-ray and synchrotron) diffraction intensities by means of the
structural multipole model [3]. Within it, the atomic core electron
densities are modeled by the orbitals of free atoms, while the crys-
talline valence electron density is presented as the sum of aspherical
atomic densities, each of which is expanded into a convergent series
over the real combinations of the spherical harmonics up to 4th
order, so called multipoles. The core and valence radial densities
of multipoles were described by the relativistic orbitals approxi-
mated by the exponential functions [49]. The Fourier transforms
of the model density, the structure factors, were fitted to the exper-
imental ones by variation of the electronic populations of the mul-
tipoles as well as the contraction/expansion parameters of the
atomic valence shells. Anisotropic harmonic atomic displacements
were accounted for using a standard approach [3]. The recon-
structed model (quasi-static) electron density, which was accurate
as �0.005 e bohr�3 in the main part of a crystal space (excluding
Notation: vh,1 (red dashed curve) stands for the Pauli potential computed using Eq.
references to color in this figure legend, the reader is referred to the web version of
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the regions around the nuclei [50]) was used in the following calcu-
lations. For diamond, the multipole-model parameters were derived
using synchrotron experimental intensities [51]. The multipole
parameters for BN and MgB2 were taken from our previous works
[52,53]. All the results described in this work were obtained using
the program WinXPRO [54,55]. We also computed the deformation
electron densities for all crystals studied in this work to facilitate the
treatment of the potentials and to verify the reliability of our pres-
ent computational results.

We note that the experimental ground-state electron density is
obtained avoiding the variation principle and the self-consistent-
field procedure. The experimental and computational electron
densities are also derived using the different basis sets. Therefore,
there are subtle differences between these densities, which reach
�0.005–0.010 a.u. in the interatomic space (for atoms with
Z < 18), as is well-documented in the literature [3,4]. An experimen-
tal electron density is derived with similar accuracy, as is indicated
above. This accuracy is sufficient to compute some density-based
properties of molecules and solids with good agreement with inde-
pendent experimental data [3]. Note that our earlier works [56,57]
confirm the feasibility of employing experimental electron densi-
ties for approximation of the DFT functionals. Taking into account
these facts, we employ the experimental electron density in this
work.

4. Results and discussion

The Pauli potential and corresponding charge density for dia-
mond, boron nitride (BN), and MgB2 crystals are presented in Figs.
2–4, respectively. As shown in Fig. 2a, the Pauli potential vh(r) in
diamond peaks on the nuclear positions, decays smoothly and then
forms near spherical barriers with a diameter �0.24 Å around each
nucleus. These barriers clearly denote the boundaries between K
and L electronic shells of bonded carbon atoms in diamond.
Between atomic cores, the Pauli potential diminishes and forms
extended near-uniform areas along the nonpolar C–C covalent
bond. This reduced Pauli potential reflects the impact of the Pauli
exclusion principle on the electronic kinetic energy and promotes
electron density accumulation along the C–C bond, as reflected in
the deformation electron density [3] (see Fig. 1S in Supplementary
material) That the Pauli potential distribution is symmetrical along
Fig. 2. The Pauli potential (a) and its associated charge density (b) for diamond in the (11
densities, while the blue curves denote the negative values. Line intervals are 0.1 a.u
interpretation of the references to color in this figure legend, the reader is referred to th
the C–C bond is a manifestation of the fact that the C–C bond in
diamond is nonpolar and covalent. From the vh(r) plot in Fig. 2a,
we also can see that the regions of the reduced Pauli potential
are slightly compressed by the atomic cores along the C–C line.
This however does not influence the near spherical shape of the
electron accumulation in the (110) plane, which is defined by
the whole set of bonding mechanisms. The potential vh(r) in the
tetrahedral and octahedral crystal holes of diamond also shows
the barrier reflecting the symmetry of the atomic positions and
separating the zigzag chains of C atoms in the (110) plane.

These results show how the antisymmetry of the diamond
many-electron wave function influences the kinetic energy within
atomic cores, promotes formation of regions of reduced Pauli po-
tential around the midpoint of the C–C and contributes to the
shape of the tetrahedral and octahedral holes of the potential in
the crystal. Compared to the free carbon atom superposition
(not shown), we do not observe significant changes in height
and position in the Pauli potential barrier that separates the K
and L electron shells of bonded carbon atoms. However, the
behaviors of the Pauli potential near the nuclei are substantially
different. The key feature from the Pauli potential as compared
with the free carbon atoms is the extended regions of reduced
Pauli potential between atomic cores. These regions with the sym-
metry axis along the C–C bonds coincide with the regions of elec-
tron density accumulation in diamond. These results indicate that
the Pauli potential distribution along the C–C bond is a clear indi-
cation and manifestation of the homonuclear nonpolar covalent
bond.

The associated Pauli charge density, qh(r), Fig. 2b, also shows
both the atomic shell structure and the bonding features of bonded
atoms in diamond clearly. The charge density qh(r) exhibits posi-
tive peaks at the nuclear positions, and alternating regions of
depletion and concentration with negatively-valued local maxi-
mum of qh(r) at the middle of the C–C covalent bonds. This picture
signals that vh(r) is locally depleted in such region (qh(r) < 0).
Simultaneously, the local concentration of the Pauli potential
(qh(r) > 0) is observed in the crystal holes. Note that positive areas
of qh(r) around atomic cores coincide with maxima in vh(r).

Put together, these results demonstrate that the three-dimen-
sional distributions of the Pauli potential and corresponding charge
density provide orbital-free information about both the atomic
0) plane. Here and below the red curves correspond to positive values of the charge
. for Pauli potential and ±2, 4, 8 � 10n (�2 < n < 3) a.u. for charge density. (For
e web version of this article.)



Fig. 3. The Pauli potential (a) and its associated charge density (b) for boron nitride, BN, plane (110). Contour intervals are 0.1 a.u. for the Pauli potential and ±2, 4, 8 � 10n

(�2 < n < 3) a.u. for the charge density.
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inner shell structure and the nonpolar covalent bonding features at
least for this crystalline system.

Fig. 3 shows the results for the boron nitride crystal with the
cubic sphalerite structure. The Pauli potential in BN also peaks at
the nuclear positions and displays potential barriers between K
and L electronic shells of both atoms. However, in contrast to
diamond, the asymmetrical nature of the surroundings causes
the shape of these barriers to be non-spherical and the barrier is
twice as high for the N atom as compared with B atom. The dis-
tance from the barrier maximum to the boron position is 0.33 Å
and that to the nitrogen position is �0.20 Å (Fig. 3a), both of which
are very close to those in the free atoms. Between atomic cores, the
Pauli potential gradually diminishes from B towards N and reaches
a minimum at the point 0.98 Å away from the B atom. This mini-
mum of vh(r) on the B–N bonds is well localized and shifted
towards the N atom, which is more electronegative and tends to
attract electrons more strongly to its side. Thus, the vh(r) minimum
position on the B–N bond line reflects the difference in the electro-
negativities of atoms involved in this bond. It is interesting to note
that the electrostatic potential does not show strong asymmetry
along B–N. Therefore electrostatic interaction is not a dominating
factor governing this shift, which results from the combined effect
of three contributions, ves(r), vxc(r) and vW(r) see Eq. (17). The
aforementioned minima exhibit the tetrahedral arrangement at
the N atom position linked by potential bridges to each other.
We also note that the potential near the N atoms decays slowly
along the continuation of the B–N bond towards the crystal holes.
In diamond such a feature is not observed. As in diamond, the
potential vh(r) in the tetrahedral and octahedral crystal holes in
BN separates the zigzag chains of atoms in the (110) plane. It is
nearly flat and higher than that in the interatomic regions.

These results indicate that the contribution to the kinetic
energy from the Pauli exclusion principle manifests itself in solid
cubic BN by distorting the shape of atomic cores, shifting the
vh(r) minima along the B–N bonds towards the N atoms, and
enhancing the vh(r) potential in the tetrahedral and octahedral
crystal holes. The regions of reduced Pauli potential along B–N
lines coincide with regions of electron density accumulation dur-
ing the formation of the B–N bond, similar to what we found in dia-
mond. Thus, this feature of the Pauli potential reflects the
formation of the heteronuclear polar covalent B–N bond.
The Pauli charge density distribution, qh(r), Fig. 3b, provides
equivalent information about the shell electronic structure and
bonding features for the solid BN crystal. It exhibits a negative re-
gion near the center of the B–N bond with a slight decrease toward
the N atom which corresponds the more electronegative nature of
N than B. Note that positive regions of qh(r) coincide with maxima
in vh(r), as seen in diamond. The Pauli charge density near the
atomic cores is unreliable because of distortions in the experimen-
tal electron density close to nuclei [3].

These results again demonstrate that Pauli potential and associ-
ated charge density are able to reproduce the atomic shell struc-
tures and display the polar-covalent nature of the B–N bond in
solid BN.

The structure of the magnesium diboride crystalline, MgB2, with
space group of P6/mmm, is formed by a hexagonal packed mono-
layer of Mg atoms separated by graphite-like networks of boron
atoms (see Fig. 2S in Supplementary material). This homonuclear
nonpolar B–B covalent bond, however, is different from that in dia-
mond because of its electron deficient nature. As reported in [53],
the B–B interactions in the boron layer exhibit strong r- and
p-bonding components, while along the c direction the layers are
linked by the weak closed-shell B–B interactions, which can be as-
signed to interlayer dispersion interactions. The Mg–B closed-shell
interactions are typical ionic bonds, accompanied by a charge
transfer of about 1.5(1) electrons from Mg atoms to the boron net-
work [53]. Thus, distinct from both diamond and boron nitride
crystals, this system includes two different categories of chemical
bonds as defined by criteria of the Quantum Theory of Atoms in
Molecules and Crystals [5]. They are ionic (Mg–B) and electron
deficient covalent (B–B) bonds. No Mg–Mg interactions were iden-
tified in MgB2 [53].

Fig. 4 shows the Pauli potential and Pauli charge distributions
for this crystal in three different planes to expose the different
kinds of chemical interactions within the crystal. From Fig. 4a
and b, we can see that in the hexagonal-packed monolayer of Mg
atoms both the Pauli potential and Pauli charge distributions are
markedly different from those for the covalently bonded systems.
The outermost electronic shell of Mg forms near-uniform, rather
symmetrical, and relatively low potential regions in the basal plane
(Fig. 4a) as well as along the c axis of the unit cell. The Mg–Mg dis-
tances are 3.520 Å along the c axis and 3.085 Å in the basal plane.



Fig. 4. The Pauli potential (a, c and e) and its associated charge density (b, d and f) for magnesium diboride, MgB2. Sections in a and b go through the Mg atoms in the basal
plane of the crystal unit cell, planes in c and d go through the boron atom network. The ‘‘inclined’’ sections e and f show the ionic Mg–B bonds. Contour intervals are 0.2 (a)
and 0.1 (c and e) a.u. for the Pauli potential and ±2, 4, 8 � 10n (�2 < n < 3) a.u. for the charge density.

Fig. 5. MgB2: The Pauli potential in the plane which is going perpendicular to the
boron network and includes the B–B bond. Contour interval is 0.1 a.u.
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The latter value is less twice the metallic radius of Mg, 3.2 Å. How-
ever, the geometrical difference does not lead to formation of the
restricted plateau in the Pauli potential between Mg atoms, such
as is observed in diamond and BN: the Pauli potential along
Mg–Mg lines resemble each other. In these areas the Pauli charge
density displays a complicated character, highlighted by regions
of the Pauli potential depletion and concentration forming space-
restricted regions. Thus, although the crystal chemistry geometri-
cal criteria allow the existence a metallic bond in the basal plane
of MgB2, we do not identify such Mg–Mg interactions in terms of
the Pauli potential.

For the graphite-like monolayer of boron atoms, along the B–B
bond (Fig. 4c), the Pauli potential barrier maximum separating
the K and L electronic shells is placed at 0.33 Å from the B nucleus
position. This barrier slowly decays in the non-bonding directions
(one of them coincides with continuation of the B–B bond), while
between atomic cores the Pauli potential is practically uniform
over the space volume spanning the B–B covalent bond. Also, the
potential vh(r) has a flat extension in the direction perpendicular
to the boron network at the B–B midpoint (Fig. 5). This feature
may be related to the existence of a weak closed-shell B–B interac-
tion between the boron layers.

The Pauli charge density along the B–B bond (Fig. 4f), is differ-
ent from that of the covalent and polar covalent bonds in diamond
and BN. There exists a small potential concentration region around
the midpoint of the B–B bond, which is confined within the near-
spherical regions with qh(r) < 0. We can speculate that this charge
accumulation can serve as a criterion to distinguish electron defi-
cient covalent bonds from regular covalent bonds. This supposition
demands further checks on other systems however.

Along each of B–Mg bonds, as shown in Fig. 4e, vh(r) exhibits a
barrier at a distance of 0.35 Å from the B atom. Further, the Pauli
potential has a double-humped form separating K, L and M elec-
tronic shells of Mg atom with the outermost barrier situated at
0.72 Å from the Mg. Beyond the L electronic shell of Mg, the Pauli
potential forms near-spherical equipotential region spanning the
Mg atom core. No clear potential minima on the B–Mg bonds, sim-
ilar to those in BN, were found. This behavior may be understood in
the context of the small directionality of twelve ionic Mg–B bonds
in a crystal [53]. The pattern shown for the Mg–B ionic bond is dif-
ferent from both the homonuclear and polar covalent bonds.

Put together, the results from the three different kinds of crys-
tals, diamond, BN, and MgB2, provide the first collection of accurate
numerical data for the Pauli potential and Pauli charge density.
They yield a general view of their three-dimensional behavior for
different bonding systems with ionic, polar and nonpolar covalent,
and electron-deficient covalent interactions.

Besides providing insights about the local behaviors of the Pauli
potential and charge in crystals, the present results can be useful in
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at least the following two ways. First, any of these quantities can be
utilized as reliable descriptors or indicators of the bonding nature
of a system which are not based on orbital representations. From
Figs. 2–4, we found that these quantities behave substantially dif-
ferently in the bonding region with respect to different bonding
interaction types. They can distinguish not only between ionic
and covalent bonds, but also identify the differences from polar
to nonpolar bonds. Second, our results derived from the accurate
experimental electron density provide useful reference data for
the development of better-behaved and more accurate approxima-
tions for the Pauli potential in OF-DFT. What we have observed in
this work partly explains why an approximate kinetic energy den-
sity functional is so difficult to find, because in the corresponding
Pauli potential distribution the information about both atomic
shell structure and bonding characteristics is required.
5. Conclusions

The Pauli potential is one of key quantities in orbital-free den-
sity functional theory. Its local behavior is still not well understood
except for a few simple systems. In this work use of the experimen-
tal electron density, allows us, for the first time, to present numer-
ical three-dimensional distribution data for the Pauli potential and
its associated Pauli charge density for three crystalline systems,
diamond, boron nitride, and magnesium diboride, with different
bonding types including ionic, nonpolar covalent, and polar cova-
lent interactions. An important finding is that these quantities
reproduce the electronic shell structure of solids. They also are able
to reveal bonding-specific features for various bonding types. They
distinguish between ionic and covalent bonds and also identify the
difference between polar and nonpolar bonds. Thus, these quanti-
ties can be used immediately to characterize chemical bonding in
molecular and crystalline systems in terms of the potentials, i.e.
they can be used as orbital-free descriptors of chemical bonding.
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