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Abstract: Full-potential linearized augmented plane wave (LAPW) and APW plus local orbital
(APW+lo) codes differ widely in both their user interfaces and in capabilities for calculations and
analysis beyond their common central task of all-electron solution of the Kohn–Sham equations.
However, that common central task opens a possible route to performance enhancement, namely
to offload the basic LAPW/APW+lo algorithms to a library optimized purely for that purpose. To
explore that opportunity, we have interfaced the Exciting-Plus (“EP”) LAPW/APW+lo DFT code
with the highly optimized SIRIUS multi-functional DFT package. This simplest realization of the
separation of concerns approach yields substantial performance over the base EP code via additional
task parallelism without significant change in the EP source code or user interface. We provide
benchmarks of the interfaced code against the original EP using small bulk systems, and demonstrate
performance on a spin-crossover molecule and magnetic molecule that are of size and complexity at
the margins of the capability of the EP code itself.

Keywords: LAPW method; APW+lo method; all-electron DFT

1. Dedication

Much credit for the widespread use of full-potential linearized augmented plane
wave (LAPW) methodology to solve the Kohn–Sham (KS) [1] equation for solids goes to
Karlheinz Schwarz. The history of that contribution is related in Section 3 of Ref. [2]. It
suffices to say here that Heinz started using the original APW in his thesis work, then
came to Gainesville and Quantum Theory Project (QTP) in 1969 to work with Prof. J.C.
Slater, the inventor of the APW method. That is how the last author of this paper became a
collaborator with Heinz and a friend.

Years later, when linearized methods removed the explicit energy dependence diffi-
culty in the APW basis, Heinz undertook development of the code that became WIEN [3].
Again there was a collaboration involving QTP, University of Florida, and the last author.
Apparently that was the first publicly available FLAPW code. By now, it has evolved
to WIEN2k [2,4]. During that evolutionary period, methodological developments led to
revival of the APW scheme via the APW plus local orbitals (APW+lo) combination (sum-
marized below). That has been instantiated in several other codes as well as WIEN2k, e.g.,
ELK [5], FlEUR [6], exciting [7], and Exciting-plus [8]. Here, we are pleased to contribute to
the further advance of this important methodology and particularly pleased to be able to
do so in honor of Heinz’ birthday.
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2. Motivating Physical Systems

The materials physics problem class driving our effort is molecular magnetism, in
particular, the contriving of condensed aggregates of molecular magnets into materials
of relevance to quantum information systems, notably, quantum computing [9,10]. The
computational challenge is to predict promising molecular magnets [11,12], and promising
aggregates of them as well as parametrizing spin Hamiltonians and aiding interpretation
of experimental data. The molecules themselves are large and complicated.

A pertinent example is the molecular magnet NiCl2-[SC(NH2)2]4, dichloro-tetrakis-
thourea-nickel, commonly called “DTN” and its Co analogue, DTC [13]. DTN is important
in this context because of its multi-ferroicity, the coexistence of ferromagnetism and fer-
roelectricity [14], in contrast with the absence of multi-ferroicity in DTC. The DTN cubic
molecular crystal structure has two Ni atoms as magnetic centers in the unit cell. Each Ni
has four S atoms and two Cl atoms as nearest neighbors, forming an octahedral structure
(like the BO6 octahedra in ABO3 perovskites). The unit cell has 70 atoms and 444 electrons,

Spin-crossover systems are a closely related, highly relevant class, as they are candidate
linkers for quantum information systems [15–17]. The electronic structure challenge is
to calculate the low-spin, high-spin energy difference and provide the potential surface
to calculate the vibrational entropic contributions. A particular significant example is
the so-called [Mn(taa)] molecule ([Mn3+(pyrol)3(tren)]), a meridional pseudo-octahedral
chelate complex of a single Mn as the magnetic center and the hexadentate tris[(E)-1-(2-
azolyl)-2-azabut-1-en-4-yl]amine ligand. It has 53 atoms and 224 electrons. Calculating its
spin-crossover energy with low-computational-cost, commonly used density functional
methodology without user intervention and tuning has proven to be a formidable task [18].

While these two examples are convenient for the demonstration of capacity focus
of this paper, they actually are a bit on the small side for the investigation of molecular
magnetic materials in general. An illustration of that challenge is a molecule of current
interest, the [Mn12O12(O2CPh)16(H2O)4] complex [19,20]. It has spin S = 10 from 176 atoms
and 1210 electrons.

Essential computational issues are made evident by these examples. The individual
molecules are structurally and electronically intricate. Typically they have complicated
spin manifolds that are strongly structurally dependent. Their condensed aggregates are
correspondingly complicated and demanding. Moreover, the presence of heavy nuclei and
the importance of anisotropy both implicate the significance of relativistic effects, includ-
ing spin-orbit coupling. In sum, predictive, materials-specific simulations of condensed
magnetic molecule systems and spin-crossover systems are extremely challenging tasks.

In the remainder of this paper, we describe the context and need for all-electron com-
putational methods with emphasis on LAPW and APW+lo methodology, then discuss
impediments to use of existing codes on the physical systems of interest, introduce sep-
aration of concerns as identifying and off-loading algorithmic elements common to any
LAPW/APW+lo code, and the SIRIUS package used as a library for that off-loading, show
how interfacing between the Exciting-Plus code and SIRIUS can be achieved, and give
numerical examples and timings for the combination.

3. Predictive Computational Approaches

Balance of computational cost-effectiveness and accuracy in treatment of electronic
structure of challengingly complicated systems is the pragmatic reason for prevalent use
of density functional theory (DFT) [21] in its KS variational form [21–24]. In the context
motivating this work, accuracy is crucial for predicting both structural properties and
characterizing spin manifolds. The primary choices regarding accuracy are the selection
of an exchange-correlation (Exc) approximation and selection of a method for solving the
resulting KS equations. We address the second. The first is an arena of intense effort that
has provided many options.

Most “electronic structure methods” come down to the choice of a basis set (and its
truncation) by which to reduce the KS equation to a linear algebra problem. The obvious,
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naïve basis for periodic systems is plane waves. It provides systematic enrichment and
is unbiased with respect to ionic charge. The long-known limitation is that the basis
becomes unmanageably large if the oscillations of near-nucleus orbitals caused by the bare
Coulomb potential are included [25]. This burden is removed by use of a pseudo-potential
instead [26] or, more recently, use of projector augmented waves (PAWs) [27]. Widely
used examples of such “plane-wave pseudo-potential-PAW” (PW-PP-PAW) codes include
VASP [28], QuantumEspresso [29], and ABINIT [30–32].

Such calculations intrinsically are not truly all-electron. Pseudo-potentials eliminate
core states, while PAWs reconstruct them. There is a need therefore to test and cross-check
plane-wave pseudo-potential calculations against truly all-electron calculations. For only
three examples of many, see Refs. [33–35]. Another example is a comparatively early use of
all-electron calculations for materials-by-design [36]. That was a study of Li-ion battery
formulations with the WIEN2k code. Though nontrivial (especially at the time), at 14 atoms
per cell with 170–178 electrons, those systems were smaller than the motivating examples
discussed above. Cross-validation is particularly important in the context of molecular
magnetic quantum materials because of core contributions to spin manifolds and spin-orbit
interaction effects.

The all-electron methodology of choice is the LAPW method or its close kin,
APW+lo [37]. Basis set construction is by use of the “muffin-tin” potential, the spherical
average of the KS potential in non-overlapping, nuclear-centered spheres and a constant
average elsewhere (the “interstitial” region). “Full-potential” denotes use of the whole KS
crystalline potential, not just the so-called muffin-tin (MT) part. Historically that was an
important distinction but today the MT potential is used only for basis set construction.
Both LAPW and APW+lo are rooted in Slater’s original APW scheme [38–43]. Within the
MT spheres, all three sets have basis functions that are atomic-like solutions of spherical
potentials. Those are matched with plane waves in the interstitial region.

Original LAPW literature is extensive, see Refs. [44–58]. Subsequently there was a
particular kind of local orbital (“LO”, not “lo”) added [59], and then the closely related
APW+lo scheme [60]. These are covered in at least two other books [37,61] as well as
various review chapters (e.g., Refs. [2,62]). Therefore here we display only those equations
directly relevant to our discussion of codes and algorithmic libraries.

The original APW basis function for Bloch wave-vector k and plane-wave vector G is

ϕG
k (r) := ∑

`,m
∑
ν

Aα,k
`mν(G)uα

`ν(r)Y`m(r̂) r ∈ α

= (1/
√

Ω)ei(G+k)·r r /∈ α (1)

Here uα
`ν(r) is the solution of the (energy-dependent, ε) radial Schrodinger equation

in the MT sphere labeled α, that is regular at the origin with principle quantum number
ν, Y`m(r̂) are spherical harmonics, Aα,k

`mν(G) are the coefficients for matching with the
interstitial plane wave, ` and m are the azimuthal and magnetic quantum numbers in a
particular sphere. (The APW basis does not have continuous radial first derivatives at the
sphere surfaces). Since the radial functions are ε-dependent, continuity at the sphere surface
requires that energy to correspond to a KS eigenvalue. The APW secular equation thus is
highly non-linear in the one-electron energies. That non-linearity induces both an important
computational computational cost and difficult-to-manage singularities whenever a radial
basis function has a node on a sphere surface.

The LAPW basis addresses those difficulties by using both the radial functions u(r; ε`)
at reference energies ε` and their energy derivatives

u̇`ν :=
∂u`ν(r; ε)

∂ε

∣∣∣
ε`

. (2)
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(The “dotted” notation for the energy derivative is conventional in LAPW literature).
Thus the basis functions become

ϕG
k (r) := ∑

`,m
∑
ν

[Aα,k
`mν(G)uα

`ν(r; ε`) + Bα,k
`mν(G)u̇α

`ν(r, ε`)]Y`m(r̂) r ∈ α

:=
1√
Ω

expi(G+k)·r r /∈ α . (3)

The coefficients follow from making each basis function continuous with continuous
first radial derivative at each sphere boundary. Unlike the APW case, the KS secular
equation in the LAPW basis is of the ordinary linear variational form. The only user-
dependent choices are the reference energies ε` and muffin-tin radii.

As the LAPW linearization is not unique, exploration of options eventually led [60]
to the recognition that a more efficient linearization combines the original APW basis
functions inside the sphere at fixed reference energies with a set of linearized (in energy) radial
functions inside the sphere, each of which vanishes at the sphere surface. This “APW+lo”
basis consists of Equation (1) enhanced with different local orbitals (“lo”),

ϕlo(r) := ∑
`,m

∑
ν

[Aα
`mνuα

`ν(r; ε`) + Bα
`mνu̇α

`ν(r, ε`)]Y`m(r̂) , r ∈ α . (4)

These localized basis functions do not have continuous derivatives at the sphere
boundary, so surface terms arise in the kinetic energy and in any gradient-dependent
exchange correlation functional.

The LAPW and APW+lo basis sets can be used together with suitable reference energy
choices and consideration of the atomic structure differences among spheres. Observe that
both basis sets are adaptive in that the radial functions evolve as the KS potential evolves
from SCF iteration to iteration.

The forms of the electron number density n(r) and the KS effective potential vKS(r)
matrix elements in these basis sets are given in Appendix A for completeness.

4. Codes and Libraries
4.1. Base Code

The present work focuses on the Exciting-Plus code, hereafter “EP” for brevity [8].
EP was developed from an early version of the ELK/exciting code, that was branched
at the time when independent evolution of exciting and ELK had just begun. EP was
developed with emphasis on post-ground-state calculations such as for the density response
function [63] and RPA [8] and GW [64] calculations. Ground state KS calculations are done
in EP with k-point task distribution and LAPACK [65] diagonalization support. EP also
implemented a convenient mpi-grid task parallelization in several independent variable
dimensions, e.g., k-points, i-j index pairs of KS states, and q points in the calculation of the
KS density response function.

EP was constructed conscientiously in terms of coding practices. However, its design
did not focus on high performance for multi-atom unit cells. Our context makes that
important. Our goal is to retain the features and capabilities of EP while making it fast
enough for routine all-electron DFT calculations to be feasible for large, complicated systems
such as the magnetic molecules, spin-crossover molecules, and aggregates discussed at
the outset.

4.2. Separation of Concerns and the SIRIUS Package

LAPW/APW+lo codes evidently share their central formalism. Because their basis
sets start from plane waves, those codes also share significant procedural elements with
PW-PP-PAW codes. Shared tasks include unit cell setup, atomic configurations, definition
and generation of reciprocal lattice vectors G, combinations with Bloch vectors G + k,
definition of basis functions on regular grids as Fourier expansion coefficients, construction
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of the plane wave contributions to the KS Hamiltonian matrix, generation of the charge den-
sity, effective potential, and magnetization on a regular grid, iteration-to-iteration mixing
schemes for density and potential, and diagonalization of the secular equation. Compared
to PW-PP-PAW codes, LAPW/APW+lo codes additionally have spatially decomposed
basis sets as outlined above.

These extensive commonalities constitute an opportunity for performance enhance-
ment via separation of concerns. Computer scientists can bring their skills to bear on the
shared algorithmic core of LAPW/APW+lo methodology while computational materials
physicists can focus on implementation of analysis, post-processing, better exchange-
correlation functionals, etc.

With achievement of the benefits of this separation in mind, an optimized package,
SIRIUS [66], was created by some of us. It has explicit, focused, highly refined implemen-
tation of LAPW/APW+lo commonalities (and PW-PP-PAW to the extent of the broader
commonality) as the goal. That is, abstracting and encapsulating objects common to LAPW
and APW+lo as the design objective for SIRIUS. By concept, it had both task parallelization
and data parallelization. It has been optimized for multiple MPI levels as well as OpenMP
parallelization and for GPU utilization.

SIRIUS can be used two ways, as a library or as a simple LAPW/APW+lo code.
Elsewhere, we will report on its use in the latter way [67]. In that case the compromise
involved is to accept the functionality limits of SIRIUS in return for being able to handle
very large systems by both task and data parallelism. Here we report on exploitation
of SIRIUS purely as a DFT library by construction of an EP-SIRIUS interface using the
SIRIUS API. The expected gain is speed-up while retaining the familiar user-interface and
post-processing functionalities of EP. Figure 1 illustrates the scheme. The intrinsic limitation
of separation of concerns is that the resulting package has limitations that, in essence, are
the union of the limitations of the host code and of the library. We discuss that briefly at
the end.

Figure 1. General scheme for utilization of SIRIUS as a library to enhance performance of a host code.

4.3. SIRIUS Characteristics and Features

SIRIUS is written in C++ in combination with the CUDA [68] back-end to provide
(1) low-level support (e.g., pointer arithmetic, type casting) as well as high-level abstractions
(e.g., classes and template meta-programming); (2) easy interoperability between C++ and
widely used Fortran90; (3) full support from the standard template library (STL) [69];
and (4) easy integration with the CUDA nvcc compiler [70]. The SIRIUS code provides
dedicated API functions to interface to exciting and to QuantumEspresso [29,71,72].
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Virtually all KS electronic structure calculations rely at minimum on two basic func-
tionalities: distributed complex matrix-matrix multiplication (e.g., pzgemm in LAPACK)
and a distributed generalized eigenvalue solver (e.g., pzhegvx also in LAPACK). SIRIUS
handles these two major tasks with data distribution and multiple task distribution levels.

The eigenvalue solver deserves particular attention. Development of exciting led to
significant code facilities to scale the calculation to larger numbers of distributed tasks
than originally envisioned by making the code switchable from LAPACK to ScaLAPACK.
This can be verified by comparing the task distribution and data distribution of the base
ground state subroutine in recent versions of exciting (version Nitrogen for example) and
ELK (version 5.2.14 or earlier for example). ELK development appears to have emphasized
physics features and functionalities rather than adding ScaLAPACK support. The EP
situation is similar. It has only LAPACK support and does not have data distribution of
large arrays. Table 1 summarizes the diagonalization methods available in these codes.

Table 1. Eigensolver options.

Full Diagonalization Iterative Diagonalization

LAPACK ScaLAPACK Davidson algorithm

Exciting-Plus Yes No No

ELK Yes No Yes

exciting Yes Yes Yes

SIRIUS Yes Yes Yes

Eigenvalue solver performance depends strongly upon the algorithm type. Widely
used linear algebra libraries (e.g., LAPACK, ScaLAPACK) implement robust full diagonal-
ization. They can handle system size up to about 106. Unfortunately for LAPW/APW+lo
calculations on systems as large as 100+ atoms, the eigensystem often is several times larger.
A Davidson-type iterative diagonalization algorithm is appropriate in that case because
it typically suffices to solve for the lowest 10–20 percent of all occupied eigenvalues and
associated eigenvectors up through and somewhat above the Fermi energy.

Davidson-type diagonalization algorithms are available in some APW+lo and PW-PP-
PAW codes, e.g., WIEN2k [73] and PWscf [74] respectively. They are not offered in standard
linear algebra libraries however. At least in part that is because such algorithms repeatedly
apply the Hamiltonian to a sub-space of the system. Therefore the algorithm depends
upon details of the Hamiltonian matrix, hence upon the specific basis-set formalism. By
virtue of focus on tasks central to LAPW/APW+lo and PW-PP calculations, the SIRIUS
package can provide an efficient implementation of Davidson-type diagonalization [75] for
LAPW/APW+lo and PW-PP-PAW codes.

4.4. Interfacing Exciting-Plus with SIRIUS

Despite its many attractive features, especially for important post-ground state calcu-
lations, EP has some significant limitations in regard to ground state calculations on large
systems such as magnetic and spin-crossover molecules. Those limits include: (1) provision
of only the LAPACK eigensolver; and (2) k-point-only MPI parallelization. This second
limit renders the code completely serial for single k-point calculations, e.g., on an isolated
molecule in a big cell.

We frame the task therefore as straight-forward interfacing to SIRIUS as an unaltered
library with comparatively minimal modification of EP. This black-box approach is pure
separation of concerns, since it is the simplest route an experienced EP user could take to try
to gain advantage from SIRIUS without investing effort in learning its inner workings. A
benefit is that the user interface to EP+SIRIUS is essentially unaltered EP, yet the combined
system provides (a) ScaLAPACK support, (b) Davidson iterative eigensolver, (c) band MPI
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parallelization for one k-point, and (d) thread-level OMP parallelization per k-point per
band. It also exposes some oddities introduced by the black-box strategy.

Interface implementation benefits from the FORTRAN API functionalities provided
by SIRIUS. Listing 1 displays the FORTRAN API function calls for parsing the atomic
configuration, the APW and lo basis from EP, and passing them to SIRIUS.

Listing 1: Setting up atomic configuration.

call sirius_set_atom_type_coniguration(sctx, string(trim(label)),&
& spn(ist,is), spl(ist,is),spk(ist,is), spocc(ist,is),&
& logical(spcore(ist,is),kind=c_bool))
enddo

The code segment in Listing 1 loops over the number of states of a single atom type
atom (spnst: species’ number of states). For each state, the API call provides to SIRIUS the
quantum numbers n, l and k for each state (spn, spl and spk), the occupation of that state
(spocc), and whether that state is treated as a core state (spcore).

The first of the two double loops in the code chunk shown in Listing 2 goes over the
APWs of one atom type and the `-channels of each APW. For each `-channel, the API call
passes the following information to SIRIUS: principle quantum numbers n (apwpqn), value
of ` (l), value of the initial linearization energy (apwe0), the order of energy derivative
of that APW (apwdm), and whether the linearization energy is allowed to be adjusted
automatically (autoenu). The second loop is over the total number of local orbitals (nlorb)
of one atom type and the orders (lorbord) of each local orbital (i.e., number of u(r) or
u̇(r) terms in that local orbital). The API call passes the following information to SIRIUS:
quantum numbers n and l (lopqn and lorbl), initial linearization energy (lorbe0), order of
energy derivative (lorbdm), and whether the linearization energy is allowed to be adjusted
automatically (autoenu).

Listing 2: Fortran API for basis description.

! parsing APW descriptions from host code to SIRIUS
do l = 0, lmaxapw
do io = 1, apword(l, is)
autoenu = .false.
if (use_sirius_autoenu.and.apwve(io,l,is)) autoenu = .true.
call sirius_add_atom_type_aw_descriptor(sctx, string(trim(label)),&
&apwpqn(l,is), l, apwe0(io, l, is), apwdm(io, l, is),&
&logical(autoenu,kind=c_bool))
enddo
enddo
! parsing LO/lo description from host code to SIRIUS
do ilo = 1, nlorb(is)
do io = 1, lorbord(ilo, is)
autoenu = .false.
if (use_sirius_autoenu.and.lorbve(io, ilo, is)) autoenu = .true.
call sirius_add_atom_type_lo_descriptor(sctx, string(trim(label)),&
&ilo, lopqn(ilo,is), lorbl(ilo, is),lorbe0(io, ilo, is),&
&lorbdm(io, ilo, is), logical(autoenu,kind=c_bool))
enddo
enddo

General input parameters such as the plane-wave cutoff, ` cutoff for the APWs and
for density and potential expansion, k-points, lattice vectors and atom positions, etc., all
are set as usual in the EP input file. Then they are passed to SIRIUS via its built-in import
and set parameter functionalities. Other important parameters such as the fast Fourier
transform grid, radial function grid inside each MT sphere, and number of first variational
states [37] often are not set in EP input files but defaulted. For EP+SIRIUS, however, those
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also must be passed to SIRIUS in the initialization step to ensure that the Hamiltonian
matrix and eigenvectors are precisely the same in EP and SIRIUS. Other information such as
specification of core states, linearization energy values and MT radii defined in the so-called
species files of EP is passed to SIRIUS at the beginning of the calculation to overwrite the
corresponding SIRIUS default values. Consider Listing 3 therefore.

Listing 3: Fortran API for setting inputs for SIRIUS.

call sirius_set_parameters( sctx,&
&use_symmetry=bool(.true.),&
&valence_rel=string(’zora’),&
&core_rel=string(’none’),&
&auto_rmt=0,&
&fft_grid_size=ngrid(1),&
&num_mag_dims=ndmag,&
&num_fv_states=nstfv,&
&pw_cutoff=gmaxvr,&
&gk_cutoff=gkmax,&
&lmax_apw=lmaxapw,&
&lmax_rho=lmaxvr,&
&lmax_pot=lmaxvr )

The code chunk shown in Listing 3 is an example of basic inputs that are added to EP
in the initialization step, in the piece of code named init0.f90. Most of the meanings are
explicit in the name. zora means zero-order relativistic approximation. ngrid is the FFT
grid set up in EP and passed to SIRIUS. Plane wave cutoff and |G + k| cutoff values are
gmaxvr and gkmax in EP. The lmaxapw and lmaxvr are the angular momentum cutoff for
APW and for charge density (and potential) inside the MT.

The inserted code shown in Listing 4 supplies SIRIUS with additional parameters for the
Davidson method if it is used. After ensuring that the setup of input quantities is identical
between the host code (EP) and SIRIUS, the ground state calculation is done solely by SIRIUS.
The results, eigenvalues and eigenvectors, are passed back to EP for further calculation.

Listing 4: Eigen-solver selection and Davidson solver parameter setup.

if (sirius_davidson_eigen_solver) then
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ : {‘‘type’’ :

‘‘davidson’’ }}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘energy_tolerance’’ : 1e-13}}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘residual_tolerance’’ : 1e-6}}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘num_steps’’ : 32}}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘subspace_size’’ : 8 }}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘converge_by_energy’’ : 1 }}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘num_singular’’ : 20 }}’))
else
! otherwise use full eigen solver from LAPACK
call sirius_set_parameters(sctx, iter_solver_type=string(’exact’))
endif

Next we display, in Listing 5, a code segment with the typical API calls from EP
to retrieve the resulting eigenvalues and eigenvectors. It is inserted in the ground state
subroutine, the piece of code named gndstate.f90.
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Listing 5: Fortran API for retrieving eigenvalues and eigenvectors from SIRIUS.

! get local fraction of eigen-vectors
do ikloc=1,nkptloc
ik=mpi_grid_map(nkpt,dim_k,loc=ikloc)
call sirius_get_fv_eigen_vectors(ks_handler, ik, evecfvloc(1, 1, 1, ikloc),

nmatmax, nstfv)
call sirius_get_sv_eigen_vectors(ks_handler, ik, evecsvloc(1, 1, ikloc), nstsv)
enddo !ikloc
! get all eigen-values and band occupancies
do ik = 1, nkpt
if (ndmag.eq.0.or.ndmag.eq.3) then
call sirius_get_band_energies(ks_handler, ik, 0, evalsv(1, ik))
call sirius_get_band_occupancies(ks_handler, ik, 0, occsv(1, ik))
else
call sirius_get_band_energies(ks_handler, ik, 0, evalsv(1, ik))
call sirius_get_band_energies(ks_handler, ik, 1, evalsv(nstfv+1, ik))
call sirius_get_band_occupancies(ks_handler, ik, 0, occsv(1, ik))
call sirius_get_band_occupancies(ks_handler, ik, 1, occsv(nstfv+1, ik))
endif
enddo

Care is needed in dealing with the MPI task schedules when interfacing to SIRIUS as a
library because typically the host code will have an MPI implementation that differs from
that in SIRIUS. For EP as the host, the task is simplified because EP has only k-point paral-
lelization in the ground-state calculation. In the initialization step, we set the SIRIUS MPI
communicator to be derived from the global MPI communicator (MPI_COMM_WORLD)
of the host code so that all MPI ranks will be used by SIRIUS. Then the user needs to specify
how SIRIUS will carry out the k-point distribution, how to plan further band parallelization
within a k-point, and thread-level parallelization. The schedules of k-point parallelization
and band parallelization are required additional inputs. Thread-level parallelization also
has additional inputs which are specified in the run job script.

If band parallelization is used in SIRIUS, the eigenvalues and eigenvectors associated
with a single k-point are distributed in multiple MPI tasks. It therefore is necessary to
combine the band subset results before transmitting the eigenvalues and eigenvectors back
to EP. Thus, after SIRIUS finishes the ground state calculation but before calling the API to
return the eigenvalues and eigenvectors to EP, SIRIUS will do mpi_reduce in the MPI band
dimension and prepare full eigenvalues and eigenvectors labeled by k-points and by the
global band index at each k-point.

The last piece of the interface provides the additional inputs for the SIRIUS Davidson
diagonalization algorithm. These are adjustable numerical parameters passed directly to
SIRIUS by EP.

As anticipated, the MPI parallelization in the band degree of freedom is one major gain
from interfacing EP to SIRIUS. We noted above that EP runs entirely in non-parallel mode
for a single k-point calculation (often a “Gamma-point calculation” or “Balderschi-point
calculation”), such as is typical for isolated molecule calculations. Hence the SIRIUS-
enhanced-EP has the same scaling as SIRIUS alone in the case of single k-point calculations.
This is an example of the antithesis of the union of limitations that is inherent in separation
of concerns. Here, separation of concerns actually avoids a limitation of the host code.

To illustrate, Figure 2 displays the benchmark of band-parallelization on the DTN
molecule (brief details about the molecule are below). It is placed in a 10× 10× 10 Å cubic
unit cell, with plane-wave cutoff 20 a−1

0 (inverse Bohr radius) and angular momentum cutoff
= 7. All jobs were set to 16 multi-threads in one task in accord with the hardware configura-
tion. The recorded time is for the first 100 SCF iterations using the Davidson diagonalization
eigensolver. Note that the figure also shows that employment of EP as a front-end to SIRIUS
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does not introduce any significant overhead. The timings for EP+SIRIUS are almost identical
to those for SIRIUS alone. Timings compared to PW-PP-PAW codes are in the next section.

Figure 2. Benchmark of band parallelization in single k-point jobs. n× n ranks are used for one
k-point.

5. EP+SIRIUS: Verification Tests on Small Solid State Systems

The EP+SIRIUS combination was bench-marked first against SIRIUS standalone on
ground-state calculations of the total energy (and magnetization for magnetic systems) for
the simple bulk materials Al, Ni, Fe, NiO, C, Si, Ge, and GaAs. For each system, identical
input parameters were used for the SIRIUS and EP+SIRIUS runs. To be systematic, we
adopted the experimental lattice parameters for all systems. The APW+lo and LAPW bases
were used. Both local density approximation (LDA) and generalized gradient approxi-
mation (GGA; PBE [76]) exchange-correlation functionals were used. In the interstitial
potential and charge density expansions, the maximum length of the reciprocal lattice
vector |G| used as plane wave cut-off for the APW was set to 12 a−1

0 for all systems. The
angular momentum truncation was taken as `max = 8 for APW, with the same value used
for the charge density, potential, and orbital inside the MT sphere. The linearization energy
associated with each APW radial function was chosen at the center of the corresponding
band with `-like character for all systems. Sampling of the first Brillouin zone was by a
dense 16 16× 16 k-mesh for all systems. All parameters were tested carefully to achieve
total energy convergence (tolerance = 10−6 Hartree). For the EP+SIRIUS calculations,
diagonalization always was done with the Davidson iterative eigensolver.

Table 2 summarizes the APW+lo basis configuration, settings other than those already
stated, and the converged total energy and magnetization of these small systems. Table 3
summarizes the same calculation setup with the LAPW basis. The good agreements in
total energy and magnetization in these tests validate the assumption that the identical
basis setup was invoked and that the constructed interface linked the SIRIUS calculation
properly with the EP host code.
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Table 2. EP+SIRIUS vs. SIRIUS, using APW+lo.

Al NiO Ni Fe
(Non-Mag.) (Non-Mag.) (FM) (FM)

crystal structure fcc rock-salt fcc bcc

latt. const. (Å) 4.05 4.17 3.52 2.87

Rmt (a0) 1.8 1.8, 1.6 2.0 2.0

valence relativity z.o.r.a. z.o.r.a. z.o.r.a. z.o.r.a.

lo config. Al: s, p Ni: s, p, d Ni: s, p, d Fe: s, p, d
O: s, p, d

LO for semi-core ε′2p = −2.55 ε′Ni,3d = −0.33 ε′Ni,3d = −0.33 ε′Fe,3d = −0.28
ε′Ni,3p = −2.59 ε′Fe,3p = −2.18

ε′O,2s = −0.87 ε′Fe,3s = −3.43

treated as core state 1s, 2s Ni: 1s, 2s, 2p, 3s 1s, 2s, 2p, 3s 1s, 2s, 2p
O: 1s

LDA:
(unit: Ha, µB)
Etot, SIRIUS −241.40085447 −1593.13659104 −1518.09194282 −1270.11766996
Etot, EP+SIRIUS −241.40085447 −1593.13659102 −1518.09194282 −1270.11766997
µtot, SIRIUS 0.564822 2.308247
µtot, EP+SIRIUS 0.564825 2.308245

GGA-PBE:
(unit: Ha, µB)
Etot, SIRIUS −241.54245824 −1593.27058366 −1518.15356943 −1270.18442575
Etot, EP+SIRIUS −241.54245824 −1593.27058365 −1518.15356942 −1270.18442575
µtot, SIRIUS 0.563466 2.327534
µtot, EP+SIRIUS 0.563467 2.327530

Table 3. EP+SIRIUS vs. SIRIUS, using LAPW.

Al NiO Ni Fe
(Non-Mag.) (Non-Mag.) (FM) (FM)

Rmt (a0) 1.8 1.8, 1.6 2.0 2.0

LAPW has same linearization energy as APW.
No more lo configurations. LO configuration is same as Table 2.

other parameters are also same as in Table 2

LDA:
(unit: Ha, µB)
Etot, SIRIUS −241.40085321 −1593.13659761 −1518.09194596 −1270.11766882
Etot, EP+SIRIUS −241.40085422 −1593.13659902 −1518.09194752 −1270.11766822
µtot, SIRIUS 0.564830 2.308243
µtot, EP+SIRIUS 0.564827 2.308240

GGA-PBE:
(unit: Ha, µB)
Etot, SIRIUS −241.54245124 −1593.27058546 −1518.15356717 −1270.18442211
Etot, EP+SIRIUS −241.54245372 −1593.27058701 −1518.15356932 −1270.18442394
µtot, SIRIUS 0.563460 2.327533
µtot, EP+SIRIUS 0.563466 2.327528

6. EP+SIRIUS: Two Molecular Examples
6.1. [Mn(taa)] Molecule

As the first known example of a manganese(III) d4 spin-crossover system [77], [Mn(taa)]
is a system of long-standing interest. Experiment shows that the Mn3+ cation goes from
a low-spin state (LS) to a high-spin state (HS) at a transition temperature of about 45 K.
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The [Mn(taa)] structure (see Figure 3) is sufficiently large that it has non-negligible intra-
molecular dispersion interactions with significant HS-LS dependence. The HS ground
state involves anti-bonding molecular orbital occupation, hence the octahedral HS complex
tends to have weaker and therefore longer metal-ligand bonds than in the LS ground state.

Figure 3. [Mn(taa)] molecule.

This combination of spin- and structural dependence makes [Mn(taa)] a significant
challenge to the computational determination of the two ground states. The purely molecu-
lar (non-thermal) ∆EHL := EHS − ELS is small compared to the total energies. Estimates
are about 50 ± 30 meV but as high as a few hundred meV. Extensive details of studies with
various codes are in Ref. [18]. Several factors can affect a DFT calculation of the molecular
∆EHL. For consistency with condensed phase calculations, it is appropriate to study the
isolated molecule in a large, periodically bounded box. Appropriate accuracy necessitates
a rather large plane wave cutoff, a need that is worsened by the amount of vacuum in the
unit cell. (We remark that the self-interaction error of the usual GGA exchange-correlation
functions (e.g., PBE) tends to cause the the LS state to be favored, hence cause overestimated
∆EHL values. That is not of concern here since what we are testing is algorithmic efficiency.
Similarly we did not use Hubbard U).

For the test of EP + SIRIUS, we used the experimentally determined HS and LS
[Mn(taa)] structures and did PBE calculations for a single molecule in a 10 × 10 × 10 Å3 box.
Comparison data are from VASP calculations on optimized structures, also with PBE and
without U. Notice, however, that the VASP calculations used a 20× 20× 20 Å3 box. Table 4
gives the parameters and results for the LS state. Its total energy is determined to be about
412 meV below that of the HS state. In contrast, the VASP results are 458-497 mev (at the
optimized geometry) with the variation arising from whether the Mn pseudo-potential has
7, 13, or 15 Mn valence electrons. This illustrates the kind of assessment that all-electron
calculations facilitate. Regarding timing, observe that the EP + SIRIUS timing is for 16
(4 × 4) MPI tasks with 8 cores per task.

Table 5 compares timing for the EP only and EP+SIRIUS all-electron calculations and
VASP PW-PP-PAW calculations. Evidently EP-only is not competitive but EP+SIRIUS is, at
least on a per iteration basis.

There is a difficulty hidden in these results however. The lesser aspect is that we
cannot run EP alone at all in a 20 × 20 × 20 3 box. The appropriate cutoffs for such a large
vacuum region cause out-of-memory problems with EP because of the way its arrays are
structured. The more severe consequence is that we also cannot do a full EP+SIRIUS run,
in the sense of returning solutions from SIRIUS to EP for post-processing, on that size box.
In effect, EP+SIRIUS is limited in this situation to being an EP user interface for input and
control of SIRIUS. The work goes to SIRIUS from EP but the results cannot be returned to EP.
Examination of EP suggests that it would take some significant restructuring to remedy the
problem, a task well outside the scope of this work or of the separation of concerns approach.
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Table 4. Parameters and results for the APW+lo calculation of the [Mn(taa)] LS state, with comparison
with VASP timings.

structure [Mn(taa)], LS state structure

unit cell 10× 10× 10 Å3 box

number of atoms in unit cell 55

Rmt (a0) Mn: 2.0; C/N: 1.2; H: 1.0;

Gmax (a−1
0 ) for APW 20

lmax for APW and ρ, (lAPW
max and lρ

max) 8

lmax for Veff, (lpot
max) 8

k-points grid 1× 1× 1

(L)APW configuration εl = −0.15 eV; ∂E = 0;
for l ≤ lAPW

max

lo configuration Mn: s, p, d; O/C: s, p; H: s;

LO for semi-core ε′Mn,3d = −0.32; ε′Mn,3p = −2.45

treated as core state Mn: 1s, 2s, 2p, 3s; O/C: 1s

µtot (µB) total: 2.00
Mn atom: 1.65

Minutes per SCF cycle EP+SIRIUS 4.5

Minutes per SCF cycle VASP 3.03–3.71

Table 5. For |G + k|max · RMT = 4, the average time (seconds) consumed per SCF iteration of EP-
SIRIUS for single [Mn(taa)] in 10 × 10× 10 Å3 box, single k-point calculation over 60 min of iterations.
Comparison is to VASP for three different pseudo-potentials (see text) in a 20 × 20 × 20 Å3 box.

|Gρ,v|max (a−1
0 ) = 12 14 16 18 20

EP-only (1 MPI task) 1140 (s) 1180 1227 1275 1323

EP+SIRIUS (1 MPI task) 156 190 178 181 318

EP+SIRIUS (4 MPI task) 45 60 42 46 72

VASP (1 MPI task) 181–223

6.2. EP+SIRIUS: DTN Molecule

The challenges and opportunities posed by the DTN molecule were summarized in
Section 2. In essence one has two transition metals in a complicated structure reminiscent
of the perovskites such that the system is both ferromagnetic and ferroelectric. See Figure 4.
Recall that the molecule has 70 atoms and 444 electrons.

Figure 4. DTN molecule crystal.
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We used EP+SIRIUS to calculate the AFM ground state of DTN. We make no attempt
at a thorough study, but simply use DTN to show the speed of an all-electron APW+lo
calculation done with EP+SIRIUS versus with the conventional implementation in EP.
Table 6 shows the parameters used and the basic results.

Table 6. Input parameters and outputs of DTN.

DTN

unit cell ≈10× 10× 10 Å3 box

number of atoms in unit cell 70

Rmt (a0) Ni: 2.0; Cl/S: 1.2; C/N: 1.0; H: 0.75;

Gmax (a−1
0 ) for APW 20

lmax for APW, (lAPW
max ) 8

lmax for ρ, (lρ
max) 8

lmax for Veff, (lpot
max) 8

k-points grid 2× 2× 2

(L)APW configuration εl = −0.15 eV; ∂E = 0;
for l ≤ lAPW

max

lo configuration Na: s, p, d
Cl/S/C/N: s, p; H: s

LO for semi-core ε′Ni,3d = −0.28
ε′Ni,3p = −2.18

treated as core state Ni: 1s, 2s, 2p, 3s
Cl/S/C/N: 1s

µtot (µB) total: 0.0
Ni atom: +/−0.72

Table 7 shows the average time per scf iteration as a function of the longest expansion
vector Gρ,v|max for the density and potential. Notice that the main gain from EP+SIRIUS
over EP alone at the level of one MPI task per k-vector is that the iteration time is almost
independent of that vector magnitude. The bigger gain comes from the multiple MPI tasks.

Table 7. For the DTN MOF structure, with |G + k|max · RMT = 4, the average time (seconds) consumed
per SCF iteration as a function of longest expansion vector for the potential and density. 2× 2× 2 k-points,
run of 60 min.

DTN Gρ,v
max (a−1

0 ) = 12 14 16 18 20

EP-only (1 MPI task per k-point) 420 (s) 420 450 515 515

EP+SIRIUS (1 MPI task per k-point) 420 440 430 440 440

EP+SIRIUS (4 MPI task per k-point) 171 184 171 195 180

7. Summary and Conclusions

To summarize, we have implemented a performance enhancement strategy for the
Exciting-Plus LAPW/APW+lo code by interfacing it with SIRIUS used as a library. We have
explored the simplest possible approach to exploiting the separation-of-concerns design
philosophy of SIRIUS, namely to interface to it as a black box. The interface outsources the
central tasks of the ground-state KS problem from EP to SIRIUS. The objective is to embed
a SIRIUS SCF loop inside EP. The implementation effort involved is moderate, benefiting
from the similarity of the data structures between EP and the LAPW/LAPW+lo elements
of SIRIUS.
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The EP+SIRIUS combination provides performance gains through diagonalization
and parallelization improvements while retaining the user interface and post-processing
functionalities of EP. The result is a major advance in capability for treating large, complex
molecular aggregates. From the user perspective, only small modifications to the original
EP input files are needed. A few lines to select use of SIRIUS and to specify the additional
parameters for the Davidson eigensolver are the only changes.

This simplest separation of concerns implementation resolves the eigenvalue solver
bottleneck in EP that comes from use of LAPACK full diagonalization. (It cannot handle
Hamiltonian matrices larger than ≈106). The hand-off to SIRIUS provides the option to use
diverse diagonalization algorithms (Davidson, ScaLAPACK, or LAPACK). Use of Davidson-
type diagonalization of the Hamiltonian in the self-consistent loop thus benefits from
multiple level parallelization within k-points and bands. The eigenvalues and eigenvectors
resulting from the SIRIUS calculation have the same structure as those of EP. The design
intent therefore is to transfer them back to EP. However, the array structure design of EP
inhibits this, as we found with [Mn(taa)]. We return to that below.

For testing and validation, we showed results from small bulk systems calculated in
both the APW+lo basis and the LAPW basis. The resulting total energy and magnetization
show no meaningful deviation from the SIRIUS standalone runs. Two very much larger
molecular systems were calculated using the APW+lo basis using both EP alone and
EP+SIRIUS. Good scaling in band parallelization for a single k-point is observed, The
parallelization of the interfaced code works well on high-performance computers, and the
computational time is drastically reduced in comparison with the original EP.

The main advantage of the interfaced code is the ease of its construction and the
support from advanced eigensolvers. We expect similar interface construction can be done
with the ELK or exciting codes without unreasonable effort.

Looking ahead, we have found that the non-distributed large arrays defined in EP
have become the new bottleneck. That is especially the case when dealing with molecular
systems containing more than ≈100 atoms in a large unit cell. The primary cause of
the bottleneck is the high plane wave G cutoff for large systems, and the fact that some
fundamental multi-dimensional arrays are defined with one dimension containing all
indices of the G vector or G + k vector. Examples of such fundamental quantities include
the augmentation wave part (u · Ylm part) of the APW basis and the so-called structure
factor, the form exp[i(G + k) · r]. These basic quantities are used in many places in the
host code. It is not an easy job to change them to be distributed data in all occurrences.
Although that system-size limitation remains, calculations based on the current EP+SIRIUS
can handle larger systems than the original Exciting-Plus and offer a significantly improved
foundation for examining the validity of the results from calculations based on various
pseudo-potentials.
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Appendix A. Expressions for Number Density and KS Potential

In the LAPW and APW+lo basis sets, the number density and KS potential obviously
are adapted, through their matrix elements, to the MT subdivision of the unit cell. In the
interstitial region they are expanded in plane waves and inside MT spheres in real spherical
harmonics R`m(r):

n(r) =


∑
`m

nα
`m(r)R`m(r̂), r ∈ α

∑
G

ñ(G)eiG·r , r /∈ α
(A1)

and

vKS(r) =


∑
`m

vα
`m(r)R`m(r̂), r ∈ α

∑
G

ṽ(G)eiG·r , r /∈ α .
(A2)

Here nα
`m(r), ñ(G), vα

`m(r), and ṽ(G) are expansion coefficients determined through
the self-consistent solution of the KS equation.
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